



# Project: Proposed Residential Development, Coolcarron, Fermoy, Co. Cork

Project No: 19074

Document Title: Civil Engineering Report

Document No: 19074-ER-01

Date: January 2021

| Date       | Revision | Status | Originator | Checked | Approved |
|------------|----------|--------|------------|---------|----------|
| January 21 | A        | Р      | IR         | MW      |          |
| March 22   | В        | Р      | IR         | MW      |          |
|            |          |        |            |         |          |
|            |          |        |            |         |          |

# **Table of Contents**

| Table of Contents                                 | i   |
|---------------------------------------------------|-----|
| 1.0 Introduction                                  | 2   |
| 1.1. Site Description                             | 4   |
| 1.2. Flooding                                     | 5   |
| 2.0 Street Design                                 | 8   |
| 2.1. Design Guidelines                            | 8   |
| 2.2. Street Hierarchy                             | 8   |
| 2.3. Shared surfaces and Surface Materials        | 9   |
| 2.4. Street Gradients                             | 9   |
| 2.5. Corner Radii                                 | 9   |
| 2.6. Pedestrian Crossings                         | .10 |
| 2.7. Pavement Construction                        | .11 |
| 2.8. On-site parking                              | .11 |
| 2.9. Private Driveways                            | .11 |
| 2.10. Site Cut and Fill                           | .11 |
| 2.11. Electricity & Gas Services                  | .11 |
| 3.0 Surface Water Drainage                        | .14 |
| 3.1. Surface Water Design and Simulation Criteria | .14 |
| 3.2. SUDs                                         | .15 |
| 3.2.1. Allowable Discharge                        | .15 |
| 3.2.2. Attenuation                                | .16 |
| 3.2.3. Hydrocarbon Interceptors                   | .18 |
| 3.2.4. Road Gullies                               | .18 |
| 4.0 Wastewater Drainage                           | .20 |
| 4.1. Wastewater Design Criteria                   | .20 |
| 5.0 Water Supply                                  | .22 |
| Appendix A                                        | A   |
| Appendix B                                        | В   |
| Appendix C                                        | С   |
| Appendix D                                        | D   |

# 1.0 Introduction

Walsh design group (WDG) were appointed by Cumnor Construction Ltd. to produce a Civil Engineering Report as part of a planning application for the proposed residential development at Coolcarron, Fermoy, Co. Cork. The proposed development consists of 336 dwelling units consisting of 250 houses, 86 duplex apartments and 1 crèche and all associated site development works. This report is particularly concerned with the following engineering services:

- Road design,
- Wastewater Drainage,
- Surface Water Drainage,
- Water Supply.

This report should be read in conjunction with the following accompanying drawings and documents submitted with the planning application:

- 19074-ER-02 Street Lighting Report,
- 19074-ER-03 Preliminary Construction and Environmental Management Plan (CEMP),
- 19074-ER-04 Preliminary Construction & Demolition Waste Management Plan (CDWMP),
- 19074-P-001-1 Site Layout & Levels (Sheet 1 of 2),
- 19074-P-001-2 Site Layout & Levels (Sheet 2 of 2),
- 19074-P-002-1 Site Layout Drainage (Sheet 1 of 3),
- 19074-P-002-2 Site Layout Drainage (Sheet 2 of 3),
- 19074-P-002-3 Site Layout Drainage (Sheet 3 of 3),
- 19074-P-003-1 Site Layout Water Main (Sheet 1 of 2),
- 19074-P-003-2 Site Layout Water Main (Sheet 2 of 2),
- 19074-P-004-1 Site Layout Street Lighting (Sheet 1 of 2),
- 19074-P-004-2 Site Layout Street Lighting (Sheet 2 of 2),
- 19074-P-301-1 Road Longitudinal Sections (Sheet 1 of 2),
- 19074-P-301-2 Road Longitudinal Sections (Sheet 2 of 2),
- 19074-P-302-1 Wastewater Network Longitudinal Sections (Sheet 1 of 5),
- 19074-P-302-2 Wastewater Network Longitudinal Sections (Sheet 2 of 5),
- 19074-P-302-3 Wastewater Network Longitudinal Sections (Sheet 3 of 5),
- 19074-P-302-4 Wastewater Network Longitudinal Sections (Sheet 4 of 5),
- 19074-P-302-5 Wastewater Network Longitudinal Sections (Sheet 5 of 5),
- 19074-P-303-1 Surface Water Longitudinal Sections (Sheet 1 of 5),
- 19074-P-303-2 Surface Water Longitudinal Sections (Sheet 2 of 5),
- 19074-P-303-3 Surface Water Longitudinal Sections (Sheet 3 of 5),
- 19074-P-303-4 Surface Water Longitudinal Sections (Sheet 4 of 5),
- 19074-P-303-5 Surface Water Longitudinal Sections (Sheet 5 of 5),
- 19074-P-304 Surface Water Outfall North Longitudinal Section,
- 19074-P-500 Surface Water Drainage Typical Details,

- 19074-P-501 Irish Water Standard Details Wastewater,
- 19074-P-502 Irish Water Standard Details Water Main (Sheet 1 of 2),
- 19074-P-503 Irish Water Standard Details Water Main (Sheet 2 of 2),
- 19074-P-504 Site Details Typical,
- 19074-P-505 Irish Water Standard Details Wastewater Rising Mains.

# 1.1. Site Description

This site is 11.56ha in total area and is currently laid out as agricultural pasture land. It is located just South of Fermoy town on the eastern side of the R639 Fermoy to Rathcormac road, see Figure 1. The site generally slopes gently downwards from west to east and there is an existing open drainage channel along the eastern boundary. Where the proposed entrance road to the development meets the R639 the ground level is 57.57m but within the site the high point is 56.99m in the southwest corner and this falls to a low point of 51.11m in the northeast corner (all levels are to Malin Head datum).



Figure 1: Satellite image showing Site Location and application boundary (Google Earth)

The southern boundary of the site is shared with agricultural land. The western boundary is shared with private dwellings at the southern end and an ESB facility and commercial properties at the northern end. An existing lay-by and weigh station is situated adjacent to the proposed development entrance, beside the R639. The northern boundary is shared with the St. Coleman's sports ground and the eastern boundary is shared with land, beyond the drainage channel that is currently forested.

# 1.2. Flooding

A desktop study of the flood history at the site was carried out. There are no records of any flooding in this area of Fermoy in the OPW's floodinfo.ie database of maps and the development lies outside all flood zones shown in the Local Area Plan for the Fermoy Municipal District.

An extract from the floodinfo.ie map is shown in Figure 2 shows the extent of flooding in Fermoy Town. The floodinfo.ie map system allows layers of flood information to be overlaid on the map to show the projected extents of the different types of flooding and the areas affected. In the extract below all layers are turned on as follows:

- CFRAM River Flood Extents Present Day (Low medium and high probability),
- CFRAM Coastal Flood Extents Present Day (Low, medium and high probability),
- National Indicative Fluvial Mapping Present Day (River low and medium probability),
- Geological Survey Ireland (GSI) Groundwater Flooding Probability maps (Low, medium and high probability).

The projected flood extents are localised in the lower lying areas Fermoy Town near the river and do not extend southwards to the proposed site which is on higher ground.

The past flood events layer is also shown in the map, indicated with the hazard signs. These events are in Fermoy Town and there is no indication that there has been a flood event in the Coolcarron area.



Figure 2: Floodinfo.ie map of Coolcarron and Fermoy

# 2.0 Street Design

The layout of the proposed streets and how they connect with the R639 Fermoy to Rathcormac Road is shown on WDG drawings no. 19074-P-001-1 and no. 19074-P-001-2 and the MHL drawings of the junction with the R639. Longitudinal sections through the roads are shown on WDG drawings no. 19074-P-301-1 and 19074-P-301-2.

# 2.1. Design Guidelines

The proposed streets within the estate have been designed in substantial compliance with the following:

- Design Manual for Urban Roads and Streets (DMURS) Dept. of Environment and Dept. of Transport Tourism and Sport-2019
- Recommendations for Site Development Works for housing areas DOE 1998

# 2.2. Street Hierarchy

There are no *Link* streets or 'through roads' proposed in the development. All of the proposed streets would be considered local streets in the DMURS hierarchy shown in Table 1. Local streets are described as streets that provide access within communities and to *Arterial* and *Link* streets. The R639 could be described as a Link road as it links the towns of Fermoy and Rathcormac as well as being the link from the M8 Arterial motorway to the south side of Fermoy.

| Roads Act/NRA DMRB       | Traffic Management<br>Guidelines                                                   | National Cycle<br>Manual                                                                                                                                                                |  |  |
|--------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| National                 | Primary Distributor<br>Roads                                                       | Distributor                                                                                                                                                                             |  |  |
| Regional<br>(see note 1) | District Distributor<br>Local Collector<br>(see Notes 1 and 2)                     | Local Collector                                                                                                                                                                         |  |  |
| Local                    | Access                                                                             | Access                                                                                                                                                                                  |  |  |
|                          | Roads Act/NRA DMRB         National         Regional<br>(see note 1)         Local | Roads Act/NRA DMRBTraffic Management<br>GuidelinesNationalPrimary Distributor<br>RoadsRegional<br>(see note 1)District Distributor<br>Local Collector<br>(see Notes 1 and 2)LocalAccess |  |  |

Notes

Note 1: Larger Regional/District Distributors may fall into the category of Arterial where they are the main links between major centres (i.e. towns) or have an orbital function.

Note 2: Local Distributors may fall into the category of Local street where they are relatively short in length and simply link a neighbourhood to the broader street network.

Table 1: DMURS Table 3.1 - Terminology used in DMURS compared with other publications

Road 1 is the spine road through the development and has a width of 6.0m. This street may be considered as a local distributor as per Note 2 of DMURS Table 3.1, see Table 1 above. The other proposed streets within the development are predominantly 5.3m wide and are served by at last one 2.0m wide footpath. 4.8m wide streets with shared surfaces are used

in some cul-de-sacs and in front of the crèche where there is an allocated set-down area and allocated parking. The intention is to introduce self-regulation in these particular locations with narrow streets and on-street parking providing a passive means of traffic calming. These carriageway widths are in keeping with those recommended in DMURS Figure 4.55. All of the estate streets will have a sign posted speed limit of 30km/h.

A colour scheme for the centre lines of the streets along with a hatch pattern for the shared surfaces was added to WDG drawings no. 19074-P-001-1 and 001-2 to illustrate the road hierarchy.

## 2.3. Shared surfaces and Surface Materials

DMURS encourages the use of raised and shared surfaces which promote integration between pedestrians, cyclists and drivers. This has been shown to be effective where pedestrian activities are high and vehicle movements are mainly due to lower level access requirements and circulatory purposes. DMURS recommends that, where design speeds of 30km/h are desired, periodic changes in the colour and/or texture of the street surfaces should be employed. In this development, shared surfaces are introduced through raised junctions, raised street sections and the use of material changes in the street surface treatments. Shared surfaces, raised junctions and raised tables for traffic calming will be finished in Duracolour Beige Stone Mastic Asphalt (SMA) to differentiate these features from the normal street surfaces.

The proposed locations and extent of these features are shown on WDG drawings no. 19074-P-001-1 and no. 19074-P-001-2.

# 2.4. Street Gradients

In accordance with DMURS guidelines, streets have been limited to gradients of 5% or less. All proposed streets shall have a cross fall of 2.5%. Vertical alignment has been carefully considered to minimise the amount of cut and fill on site.

For details of the road configuration at the entrance to the development from the R639 please refer to the MHL documents submitted with this application.

# 2.5. Corner Radii

According to DMURS section 4.3.3, reducing corner radii will significantly improve pedestrian and cyclist safety at junctions by lowering the speed at which vehicles can pass through corners and increasing the inter-visibility between users. At tighter corner radii vehicle and cyclist speeds are more compatible. The majority of the larger junctions between local streets within the proposed development have corner radii of between 3.0m and 4.5m and the junctions with the narrower 4.8m wide streets have minimum junction radii of 2.0m. This is considered to be acceptable in residential developments where design speeds are low and movements of larger vehicles are infrequent. Autodesk Vehicle Tracking Software 2019 has been used to verify that fire tenders and refuse vehicles can negotiate the junctions and bends in the estate streets.

### 2.6. Pedestrian Crossings

Pedestrian crossings will be placed throughout the development on streets which have footpaths on both sides and at junctions, see WDG drawings no. 19074-P-001-1 and no. 19074-P-001-2. The proposed pedestrian crossings are uncontrolled crossing points. Each crossing point shall be constructed using dished kerbs in accordance with Diagram 13.1 of the Traffic Management Guidelines 2013, see Figure 3.



Figure 3: Diagram 13.1 Dished Crossing - Traffic Management Guidelines; DOT, 2013

Buff coloured tactile paving in accordance with Table 13.1 of the Traffic Management Guidelines shall be set in the footpath at each crossing point.

# 2.7. Pavement Construction

Street and footpath construction shall be in accordance with Cork County Council requirements. The road build-up, as shown in drawing no.19074-P-504 assumes a minimum design CBR for the existing ground. The main contractor will be obliged to carry out testing to establish the actual CBR prior to commencement of any street construction.

# 2.8. On-site parking

Permeable paving is proposed for all car parking spaces in the public areas of the development i.e. every parking space that is not within the curtilage of a private dwelling. The permeable paving will allow surface water to soak into the subsoil and ground water rather than leaving the site via the sewer network which is preferable in terms of SUDS. See the GCA Architect's Design Submission for detail on parking allocation.

## 2.9. Private Driveways

Each private dwelling plot with car parking included will have a driveway designed to provide two parking spaces. Driveway slopes will be in compliance with Technical Guidance Document M of the Building Regulations. Footpaths across driveway entrances will be dished and incorporate dropped kerbs.

# 2.10. Site Cut and Fill

For details on the site cut and fill please read the Construction and Demolition Waste Management Plan (CDWMP) that accompanies the application as a standalone document.

# 2.11. Electricity & Gas Services

ESB networks were contacted regarding power lines running in the vicinity and through the site. There are no buried cables running through the site but there are several medium voltage 10kV/20kV overhead lines and one high voltage 38kV overhead line indicated on the original map (No. 20190912-020\_A3) provided by the ESB in Appendix D.

It is proposed to underground the 38kV cables that are currently overhead from the southern boundary to the ESB distribution facility to the west of the site. A form NW1 was submitted to the ESB requesting the diversion and subsequently, the diversion route as shown on drawings no. 19074-P-001-1 and 19074-P-001-2 was agreed. The works proposed include the construction of a new Type F lattice steel mast near the southern boundary at which the overhead cables coming from the South will be diverted underground. From the lattice mast new ducting will be laid in the ESB's trefoil 5-way duct formation along the route shown in the drawings. This duct trench is 600mm wide and shall have a 4.0m wide wayleave for access which is centred on the trench.

Appendix D to this report includes the ESB's letter agreeing to the requested changes to their distribution network. Also included is the ESB map showing the proposed new underground route for the 38kV cables through the development (Map No. 5959-C) and the structures proposed at each end of the undergrounded cables.

Should An Bord Pleanála be mindful to grant panning permission for the development, a separate diversion agreement shall be entered into with ESB networks to have the 10kV/20kV overhead lines rerouted to suit the proposed layout. These works are less complex than those on the 38kV line and do not involve large structures.

Gas Networks Ireland was contacted regarding the gas supply services in the vicinity of the proposed development site. The map supplied in Appendix D to this document shows the extent of services in the area. A gas supply line runs under the R639 outside the proposed entrance but other than that there are no other gas mains present near the site and a diversion of gas services will not be required.

# 3.0 Surface Water Drainage

The proposed storm sewer collection system consists of a 100 mm diameter pipe collection network around each house in accordance with TGD part H discharging to 225mm diameter uPVC sewer pipes or larger under the estate streets. The surface water network layout is shown in drawings no. 19074-P-002-1, 19074-P-002-2 and 19074-P-002-3 and the typical details for the surface water infrastructure are shown on drawing no. 19074-P-500.

The surface water networks have been designed using the MicroDrainage design software and the Wallingford procedure for the design and analysis of urban drainage. The overall drainage system has been designed in 6 separate networks (numbered 2-7) due to the topography of the site and the proposed street layout. All networks are designed to discharge an attenuated flow of surface water into the existing open drainage channels in the site which in turn, eventually discharge to the River Blackwater in Fermoy.

The main drainage channel which forms the eastern boundary of the site has a very gentle fall from south to north and continues north past the St. Coleman's sports ground. Before the channel reaches College Road it is currently channelled under an astro-turf playing pitch owned by the Loreto Convent in an old stone culvert. It is proposed to partially divert the flow in the drainage channel, before the stone culvert, into a new 750mm diameter pipe flowing westward across the northern end of the St. Coleman's sports ground to Devlin Street where it will connect to an existing manhole and the 900mm diameter surface water sewer downstream, see WDG drawings no. 19074-P-002-3 and 19074-P-304. It is envisaged that the new 750mm dia. pipe will carry almost all of the water westward, however, two 100mm dia. openings shall be constructed in the head wall to ensure that the old stone culvert remains active with a low flow.

# 3.1. Surface Water Design and Simulation Criteria

The storm networks design criteria included:

- maximum rainfall of 50 mm/hr,
- maximum time of concentration of 30 minutes,
- minimum cover of 1.2m to pipes under streets,
- M5-60 of 17.0mm,
- R Ratio of 0.2

The storm networks were tested by simulating both summer and winter storms with durations of between 15 minutes and 24 hours and return periods of 1, 30 and 100 years with the following criteria:

- Summer volumetric runoff coefficient of 0.75,
- Winter volumetric runoff coefficient of 0.84,
- Areal runoff factor of 1.0,
- Additional flow for climate change of 20%,
- Madd Factor of 2.

The surface water sewer networks have been modelled and each individual pipe run has been designed such that no flooding will occur to individual elements during any storm up to and including 24 hour 100 year return period, summer and winter storms. In all storm simulations an additional flow of 20% was added to account for future climate change.

(See detailed design in Appendix A to this document).

### 3.2. SUDs

### 3.2.1. Allowable Discharge

In accordance with the recommendations of sustainable urban drainage systems (SUDS) the allowable stormwater discharge from the surface water network was calculated by means of the QBAR equation for small rural catchments (< 25 km2) as indicated in the institute of Hydrology, UK Report No. 124. QBAR is calculated using the following formula: QBAR = (0.00108 [AREA]0.89 [SAAR]1.17 [SOIL]2.17)

Where,

| QBAR (m <sup>3</sup> /sec) | = | Annual peak flow                        |
|----------------------------|---|-----------------------------------------|
| AREA (km <sup>2</sup> )    | = | Catchment area                          |
| SAAR (mm)                  | = | Standard annual average rainfall        |
| SOIL                       | = | Index with values between 0.15 and 0.50 |

The variables for the sewer Network 2 which outfalls at manhole S85 are as follows:

AREA The catchment area of the estate that will have its runoff attenuated is  $2.0412ha = 0.020412km^2$ ,

SAAR The standard average rainfall for the site for the period from 1941 to 1970 was obtained from Met Eireann and is approximately 1166 mm/year,

SOIL This index was obtained using the UKSUDS greenfield runoff map which places the site in an area of Type 4 soil with an SPR of 0.3.

For developments smaller than 50 ha, the allowable discharge is linearly interpolated from the QBAR value obtained for a 50 ha site. Inputting the above data into the QBAR equation, QBAR Actual is calculated as follows:

| QBAR | = | (0.020412 [0.5]0.89 [1166]1.17 [0.3]2.17) |
|------|---|-------------------------------------------|
|      | = | 0.165.54 m <sup>3</sup> /sec              |
|      | = | 165.54 l/sec                              |

By linear interpolation => QBAR Actual = 6.76 l/sec.

Using the same approach for the remaining networks the results were as follows:

- Network 3 catchement area is 1.148ha and QBAR is 3.80 l/sec,
- Network 4 catchement area is 1.249ha and QBAR is 4.14 l/sec,
- Network 5 catchement area is 3.443ha and QBAR is 11.4 l/sec,

- Network 6 catchement area is 2.4741ha and QBAR is 8.18 l/sec,
- Network 7 catchement area is 0.922ha and QBAR is 3.05 l/sec.

### 3.2.2. Attenuation

In accordance with the Wallingford Procedure, using only impermeable areas in the modified rational method, a Cv (Volumetric Runoff Coefficient) of 0.75 is used for summer events and 0.84 for winter. For the purpose of calculating the volume and rate of flow in the network, the maximum hardstanding area contributing to each pipe run was measured. The hardstanding consists of all roofs, paths, driveways, roads and other paving within the contributing area.

To limit the outfall from the networks to the greenfield runoff rate in storm simulations Aqua Brakes were placed in manholes just upstream of the outfalls limiting the outflows from each network to the QBAR figures listed in the previous section. These vortex flow control devises are specifically designed for the required flows, have no moving parts and are powered by water flow alone. The devices are designed to minimise risk of blockage but are also equipped with a bypass door that can be manually opened in case of blockage. The Manholes concerned will also be fitted with a head wall and an overflow pipe, in accordance with the manufacturer's recommendations, to prevent flooding. The top level of the overflow pipe will be set slightly below the cover level of the adjacent attenuation tank.

During storm simulations on the network the choking of the flow using Aqua Brakes resulted in flooding upstream of the flow control in each network. To eliminate flood risk in the system, attenuation tanks were chosen for temporary storage of surface water runoff. The proposed attenuation tanks will consist of ESS Eco-cell, cellular water storage modules (or similar approved) measuring 690mm x 410mm x 450mm high, arranged to form tanks as shown on drawings no. 19074-P-002-1 and 19074-P-002-2 and details drawing no. 19074-P-504. The modules are moulded polypropylene and have an internal void ratio in excess of 95%.

The proposed attenuation tanks have been sized so that no flooding will occur in any rainfall event up to and including the 24 hour 100 year event with a further allowance of 20% for future climate change.

- Network 2 Tank 41.2m x 18.0m x 1.1m deep = 816m<sup>3</sup>,
- Network 3 Tank 25.0m x 9.0m x 1.0m deep = 225m<sup>3</sup>
- Network 4 Tank 16.5m x 16.5m x 1.0m deep = 272m<sup>3</sup>,
- Network 5 Tank 26.5m x 26.5m x 1.4m deep = 984m<sup>3</sup>
- Network 6 Tank 16.0m x 30.0m x 1.2m deep = 576m<sup>3</sup>,
- Network 7 Tank 9.0m x 17.8m x 1.3m deep = 208m<sup>3</sup>.

The modules will be wrapped with Tuflex impermeable geomembrane (or similar approved) with lapped, heat welded joints. To protect the waterproof geomembrane during backfilling the top and sides are to be lined with a Geotex 300 PP needle punched, non-woven geotextile with lapped joints. Vent pipes and water pipes will be connected to the tank using heavy duty pipe collars heat welded to the Tuflex impermeable geomembrane and with stainless steel strangle bands for fastening around the pipe. A 100mm thick layer of thick

coarse sand or class 6H selected granular material will surround the geotextile on the top and sides of the tank to provide further protection.

The cellular storage modules will be laid on a flat, level and smooth base of selected, compacted granular material. A vent pipe from the top of the tank will allow the release of air during tank filling and allow air to be drawn into the tank as the water level falls. The vent box, protecting the top of the vent pipe, will consist of a Stanton heavy duty ductile iron double triangular surface box (or similar approved) with a vented cover, 300mm x 300mm clear opening and a minimum of 100mm frame depth on a mortar bed.

The minimum recommended soil cover over Eco-cell modules is 500mm in a green area and 650mm in a trafficked area. It is proposed to locate these tanks under green areas with a soil cover in excess of 500mm. During construction, measures will be taken to prevent vehicles passing over or near the tanks. A CBR of between 3% and 5% has been assumed at sub-base level. CBR testing will be carried out by the contractor prior to installation.

### Infiltration

The Eco-cell tanks can equally be constructed to allow infiltration of the attenuated surface water directly into the surrounding earth by replacing the impermeable membrane surrounding the modules with a proprietary permeable geotextile. This would reduce the quantity of runoff discharging to the drainage channels and further add to the SUDS in the development. The use of a permeable membrane would be subject to detailed ground investigations over time to determine the infiltration rate of the soil at each location and the depth to the water table at different times of the year. Should site conditions allow, the use of these infiltration tanks would be recommended.

### **Permeable Paving**

Permeable paving is proposed for all car parking spaces in the public areas of the development i.e. every parking space that is not within the curtilage of a private dwelling, should the results of infiltration rate testing allow. The permeable paving will allow surface water to soak into the subsoil and ground water rather than leaving the site via the sewer network which is preferable in terms of SUDS. See the GCA Architect's Design Submission for detail on parking allocation.

### **Tree Pits & Filter Drains**

Infiltration tree pits, constructed in accordance with CIRIA SuDS Manual Chapter 19, are proposed throughout the green areas of the site, particularly adjacent to the estate streets where a small proportion of the surface water from the hard road and footpath surfaces can be channelled towards the tree base and percolate to ground water.

Filter drains are linear drains consisting of a shallow trench filled with permeable aggregate material and sometimes with perforated pipe in the base to assist drainage. It is proposed to construct these drains, in accordance with the guidance in the CIRIA SuDS Manual Chapter 16, parallel with the road and footpath edges to collect a small proportion of the rainwater runoff and allow it to percolate to the ground water.

### Water Butts

It is proposed to install a 300 litre water butt to the rear of each dwelling that has a rear garden. The water butt shall be designed to collect water from the downpipes with a bypass system so that they do not overtop and flood the yard/garden. A tap on the water butt will allow the water to be used for gardening or car washing etc. using harvested rainwater and reducing demand on the local authority water supply.

## **3.2.3.** Hydrocarbon Interceptors

It is proposed to install hydrocarbon bypass interceptors in each of the surface water network just upstream of the final Aqua brakes and attenuation tanks. The interceptors shall be sized as follows:

- Network 2 The peak flow rate is 102 l/s. A Klargester NSBE015 (or similar approved) interceptor is designed to treat a peak flow rate of 150 l/s,
- Network 3 The peak flow rate is 39 l/s. A Klargester NSP004 (or similar approved) interceptor is designed to treat a peak flow rate of 45 l/s,
- Network 4 The peak flow rate is 44 I/s. A Klargester NSBP004 (or similar approved) interceptor is designed to treat a peak flow rate of 45 I/s,
- Network 5 The peak flow rate is 133 l/s. A Klargester NSBE015 (or similar approved) interceptor is designed to treat a peak flow rate of 150 l/s,
- Network 6 The peak flow rate is 90 l/s. A Klargester NSBE010 (or similar approved) interceptor is designed to treat a peak flow rate of 100 l/s,
- Network 7 The peak flow rate is 40 l/s. A Klargester NSBP004 (or similar approved) interceptor is designed to treat a peak flow rate of 45 l/s.

Bypass separators are considered adequate in residential developments where the risk of a large spillage and heavy rainfall occurring at the same time is low.

## 3.2.4. Road Gullies

Gullies are positioned throughout the proposed roads for the collection of surface water from footpaths, roads, driveways, parking bays and other impervious areas for discharge into the drainage system. The minimum rate of gully provision recommended in; 'Recommendations for Site Development Works for Housing Areas' is one per 200m<sup>2</sup> of hard surface.

The 'Site 3D' software application was used to set out the roads and drainage for the development. This software positions gullies according to road area, gradient and curvature. Low points are picked up by the software and gullies are doubled at the low point of sag curves to prevent ponding. Gullies are also positioned at the bottom of all ramps to the raised junctions where surface water will collect. Drawing no. 19087-P-002 shows the proposed position of all gullies.

All gullies in the roadways will be precast concrete complying with the requirements of BS 5911: Part 230. The outlet from the gullies will be 150mm diameter pipe set a minimum of 375mm off the floor of the chamber. This allows for debris and silt that falls through the grating to settle below the invert of the outlet pipe. The silt in gullies must be regularly

cleaned out as part of the silt management and maintenance schedule in the operational phase of the housing development.

The class of gully grating required will be D400 as per the manhole covers. Gully gratings in roads will be set with the direction of the openings at right angles to the direction of traffic.

# 4.0 Wastewater Drainage

The layout of the proposed wastewater drainage network for the development is shown on drawings no. 19074-P-002-1 and no. 19074-P-002-2 and the typical details for the wastewater infrastructure are shown on drawing no. 19074-P-501. The network is a conventional piped, gravity sewer flowing to a wastewater pumping station in the East of the site from where it is proposed to pump the wastewater, via rising main, to the public wastewater sewer in the R639.

All sewers within the curtilage of individual houses have been designed and are to be installed in accordance with TGD Part H (2010) and will consist of 100 mm diameter uPVC Sewers from individual houses laid to falls of min 1:60 to connect to a 225mm uPVC sewer to be laid under the estate street. Inspection chambers will be constructed within 1m of the boundary of each private property in accordance with Irish Water Standard Details. All foul sewers have been designed in compliance with Irish Water's Code of Practice for Waste Water Infrastructure – A Design and Construction Guide for Developers (Revision 2) July 2020. All construction details within the public realm will be in accordance with Irish Water, Wastewater Infrastructure Standard Details (Revision 4), July 2020.

A pre-connection enquiry was submitted to Irish Water to assess the feasibility of providing a connection to the site. See Appendix C to this document for the pre-connection enquiry form and calculations. At that time the proposed development involved 374 dwelling units and a crèche. Irish Water subsequently issued a confirmation of feasibility which noted that the capacity of the Fermoy wastewater treatment plant (WWTP) would need to be upgraded to accommodate the proposed development. Following this, Michael Walsh of Walsh Design Group consulted with Tadhg Coffey and Brian O'Mahony of Irish Water, and it was established that the upgrades required to the WWTP were relatively minor, could be carried out by Irish Water and should not hold up the planning application.

After the tri-partite meeting, a detailed design of the wastewater networks was submitted to Irish Water for design approval. Irish Water has since issued a statement of design acceptance for the wastewater infrastructure layout and details. See Appendix C to this report for Irish the Irish Water correspondence and Michael Walsh's memo regarding his consultation with Irish Water.

The proposed development of 336 dwellings and 1 crèche will ultimately discharge to the Irish Water infrastructure. As such, a connection agreement will be required with Irish Water and it is anticipated that the current design team will liaise closely with Irish Water prior to making a connection agreement application.

## 4.1. Wastewater Design Criteria

For the purposes of clarity the wastewater sewer system has been designed using the following parameters, as required in Irish Water document IW-CDS-5030-03 Section 3.6:

- Flow per person: 150 L/day
- Average persons per household: 2.7 persons
- Unit consumption allowance (infiltration) 10%

- Minimum velocity for pipe running full: 0.75 m/sec
- Peak flow: 4.5 DWF

The detailed hydraulic design parameters and calculations for the wastewater network are included in Appendix B to this document.

A domestic peak flow factor of 4.5 has been applied to the wastewater network. The number of dwellings that will discharge to the sewer via the proposed network is 336. Using Irish Water's figure of 2.7 average persons per household, this amounts to a population of 908. Section 2.2.5 of Appendix B of Irish Water document IW-CDS-5030-03 states that, where the population served is between 751 and 1000 a peaking factor of 4.5 should be used. For populations up to 750 a peaking factor of 6 should be used.

# 5.0 Water Supply

It is proposed that a connection to the existing Irish Water infrastructure will be made in the R639 road. The watermain layout is shown on WDG drawing no. 19074-P-003-1 and no. 19074-P-003-2 and the water main typical details are shown on drawings 19074-P-502 and 19074-P-503.

A pre-connection enquiry was submitted to Irish Water to assess the feasibility of providing a connection to the site. Irish Water subsequently issued a confirmation of feasibility which noted that the connection to the existing water supply infrastructure was feasible without upgrade by Irish Water. See Appendix C to this document for the pre-connection enquiry form and Confirmation of Feasibility. After the tri-partite meeting a detailed design of the watermain network was submitted to Irish Water for design approval and Irish Water issued a statement of design acceptance which is included in Appendix C to this report.

Private properties will each have a separate service connection, fitted with an Irish Water approved boundary box immediately outside the boundary. Fire hydrants are placed so that no domestic property within the development is more than 46m from a hydrant. All potable water infrastructure will be constructed in accordance with the following Irish Water documents:

- IW-CDS-5020-03 Code of Practice for Water Infrastructure Connections and Developer Services, July 2020 (Revision 2)
- IW-CDS-5020-01 Water Infrastructure Standard Details Connections and Developer Services, July 2020 (Revision 4).

# Appendix A

Surface Water Sewer Networks Design

| Walsh Design Group                     |                         |          |  |  |  |  |
|----------------------------------------|-------------------------|----------|--|--|--|--|
| The Mall, Maryborough Woods            | Residential Development |          |  |  |  |  |
| Douglas                                | Coolcarron              |          |  |  |  |  |
| Co. Cork Ireland                       | Fermoy                  | Mirro    |  |  |  |  |
| Date 03/03/2022 09:03                  | Designed by IR          |          |  |  |  |  |
| File Coolcarron_Model_4.1_DRAINAGE.mdx | Checked by MW           | Diamacje |  |  |  |  |
| XP Solutions                           | Network 2018.1.1        |          |  |  |  |  |

### STORM SEWER DESIGN by the Modified Rational Method

#### Design Criteria for Surface Network 2

Pipe Sizes Storm Manhole Sizes IW-MH

| FSR Rainfall I                       | Model - | Scotland and Ireland                  |       |
|--------------------------------------|---------|---------------------------------------|-------|
| Return Period (years)                | 1       | PIMP (%)                              | 100   |
| M5-60 (mm)                           | 17.000  | Add Flow / Climate Change (%)         | 0     |
| Ratio R                              | 0.200   | Minimum Backdrop Height (m)           | 0.200 |
| Maximum Rainfall (mm/hr)             | 50      | Maximum Backdrop Height (m)           | 2.500 |
| Maximum Time of Concentration (mins) | 30      | Min Design Depth for Optimisation (m) | 1.200 |
| Foul Sewage (l/s/ha)                 | 0.000   | Min Vel for Auto Design only (m/s)    | 1.00  |
| Volumetric Runoff Coeff.             | 0.750   | Min Slope for Optimisation (1:X)      | 500   |
|                                      |         |                                       |       |

Designed with Level Inverts

Time Area Diagram for Surface Network 2

Time<br/>(mins)Area<br/>(ha)Time<br/>(mins)Area<br/>(mins)Time<br/>(mins)Area<br/>(mins)0-40.5784-80.6758-120.002Total<br/>Area<br/>Contributing(ha) = 1.2551.255Total<br/>PipeVolume<br/>(m³) = 34.178

#### Network Design Table for Surface Network 2

| PN             | Length<br>(m)    | Fall<br>(m)    | Slope<br>(1:X) | I.Area<br>(ha) | T.E.<br>(mins) | Ba<br>Flow | ase<br>(1/s) | k<br>(mm)      | HYD<br>SECT | DIA<br>(mm) | Section Type                 | Auto<br>Design |
|----------------|------------------|----------------|----------------|----------------|----------------|------------|--------------|----------------|-------------|-------------|------------------------------|----------------|
| 1.000<br>1.001 | 27.726<br>53.059 | 0.584<br>0.769 | 47.4<br>69.0   | 0.065<br>0.131 | 5.00<br>0.00   |            | 0.0          | 0.600<br>0.600 | 0<br>0      | 225<br>225  | Pipe/Conduit<br>Pipe/Conduit | 8              |
| 2.000          | 29.699           | 1.061          | 28.0           | 0.053          | 5.00           |            | 0.0          | 0.600          | 0           | 225         | Pipe/Conduit                 | 0              |
| 1.002          | 30.774           | 0.511          | 60.2           | 0.014          | 0.00           |            | 0.0          | 0.600          | 0           | 225         | Pipe/Conduit                 | ٥              |
| 3.000          | 45.172           | 0.283          | 159.6          | 0.329          | 5.00           |            | 0.0          | 0.600          | 0           | 300         | Pipe/Conduit                 | 8              |
| 1.003          | 64.470           | 0.607          | 106.2          | 0.147          | 0.00           |            | 0.0          | 0.600          | 0           | 375         | Pipe/Conduit                 | 0              |
| 4.000          | 51.092           | 0.306          | 167.0          | 0.129          | 5.00           |            | 0.0          | 0.600          | 0           | 300         | Pipe/Conduit                 | 0              |

#### Network Results Table

| PN             | Rain<br>(mm/hr) | T.C.<br>(mins) | US/IL<br>(m)     | Σ I.Area<br>(ha) | Σ Base<br>Flow (l/s) | Foul<br>(l/s) | Add Flow<br>(l/s) | Vel<br>(m/s) | Cap<br>(1/s) | Flow<br>(1/s) |
|----------------|-----------------|----------------|------------------|------------------|----------------------|---------------|-------------------|--------------|--------------|---------------|
| 1.000<br>1.001 | 34.90<br>33.73  | 5.24<br>5.80   | 54.195<br>53.610 | 0.065<br>0.196   | 0.0                  | 0.0           | 0.0               | 1.90<br>1.58 | 75.7<br>62.7 | 6.1<br>17.9   |
| 2.000          | 34.99           | 5.20           | 53.902           | 0.053            | 0.0                  | 0.0           | 0.0               | 2.48         | 98.7         | 5.0           |
| 1.002          | 33.14           | 6.11           | 52.841           | 0.263            | 0.0                  | 0.0           | 0.0               | 1.69         | 67.1         | 23.6          |
| 3.000          | 34.13           | 5.61           | 52.613           | 0.329            | 0.0                  | 0.0           | 0.0               | 1.24         | 87.8         | 30.4          |
| 1.003          | 32.07           | 6.72           | 52.330           | 0.738            | 0.0                  | 0.0           | 0.0               | 1.76         | 194.1        | 64.1          |
| 4.000          | 33.93           | 5.70           | 52.029           | 0.129            | 0.0                  | 0.0           | 0.0               | 1.21         | 85.8         | 11.8          |

| Walsh Design Group                     |                         | Page 1   |
|----------------------------------------|-------------------------|----------|
| The Mall, Maryborough Woods            | Residential Development |          |
| Douglas                                | Coolcarron              |          |
| Co. Cork Ireland                       | Fermoy                  | Mirro    |
| Date 03/03/2022 09:03                  | Designed by IR          | Desinado |
| File Coolcarron_Model_4.1_DRAINAGE.mdx | Checked by MW           | Diamaye  |
| XP Solutions                           | Network 2018.1.1        |          |

### Network Design Table for Surface Network 2

| PN    | Length<br>(m) | Fall<br>(m) | Slope<br>(1:X) | I.Area<br>(ha) | T.E.<br>(mins) | Ba<br>Flow | ase<br>(l/s) | k<br>(mm) | HYD<br>SECT | DIA<br>(mm) | Section Type | Auto<br>Design |
|-------|---------------|-------------|----------------|----------------|----------------|------------|--------------|-----------|-------------|-------------|--------------|----------------|
| 1.004 | 21.258        | 0.133       | 159.8          | 0.049          | 0.00           |            | 0.0          | 0.600     | 0           | 375         | Pipe/Conduit | A              |
| 1.005 | 19.453        | 0.078       | 250.0          | 0.126          | 0.00           |            | 0.0          | 0.600     | 0           | 375         | Pipe/Conduit | Ă              |
| 1.006 | 31.141        | 0.125       | 250.0          | 0.000          | 0.00           |            | 0.0          | 0.600     | 0           | 375         | Pipe/Conduit | ă              |
| 5.000 | 24.815        | 0.149       | 166.7          | 0.060          | 5.00           |            | 0.0          | 0.600     | 0           | 225         | Pipe/Conduit | 8              |
| 5.001 | 6.403         | 0.126       | 50.8           | 0.000          | 0.00           |            | 0.0          | 0.600     | 0           | 225         | Pipe/Conduit | 8              |
| 1.007 | 28.367        | 0.113       | 251.0          | 0.061          | 0.00           |            | 0.0          | 0.600     | 0           | 450         | Pipe/Conduit | 8              |
| 1.008 | 5.958         | 0.024       | 250.0          | 0.092          | 0.00           |            | 0.0          | 0.600     | 0           | 450         | Pipe/Conduit | ē              |

### Network Results Table

| PN    | Rain<br>(mm/hr) | T.C.<br>(mins) | US/IL<br>(m)     | Σ I.Area<br>(ha) | Σ Base<br>Flow (l/s) | Foul<br>(l/s) | Add Flow<br>(l/s) | Vel<br>(m/s) | Cap<br>(1/s) | Flow<br>(l/s) |
|-------|-----------------|----------------|------------------|------------------|----------------------|---------------|-------------------|--------------|--------------|---------------|
| 1 004 | 31 66           | 6 97           | 51 723           | 0 916            | 0.0                  | 0 0           | 0 0               | 1 43         | 158 0        | 78 5          |
| 1.004 | 31.20           | 7.25           | 51.590           | 1.041            | 0.0                  | 0.0           | 0.0               | 1.14         | 126.1        | 88.0          |
| 1.006 | 30.52           | 7.71           | 51.512           | 1.041            | 0.0                  | 0.0           | 0.0               | 1.14         | 126.1        | 88.0          |
| 5.000 | 34.54           | 5.41           | 51.662           | 0.060            | 0.0                  | 0.0           | 0.0               | 1.01         | 40.1         | 5.7           |
| 5.001 | 34.42           | 5.47           | 51.513           | 0.060            | 0.0                  | 0.0           | 0.0               | 1.84         | 73.1         | 5.7           |
| 1.007 | 29.99<br>29.88  | 8.07<br>8.15   | 51.387<br>51.274 | 1.163<br>1.255   | 0.0                  | 0.0           | 0.0               | 1.28         | 203.3        | 94.5<br>101.6 |

| Walsh Design Group                     |                         |          |  |  |  |  |
|----------------------------------------|-------------------------|----------|--|--|--|--|
| The Mall, Maryborough Woods            | Residential Development |          |  |  |  |  |
| Douglas                                | Coolcarron              |          |  |  |  |  |
| Co. Cork Ireland                       | Fermoy                  | Mirro    |  |  |  |  |
| Date 03/03/2022 09:03                  | Designed by IR          | Desinado |  |  |  |  |
| File Coolcarron_Model_4.1_DRAINAGE.mdx | Checked by MW           | Diamage  |  |  |  |  |
| XP Solutions                           | Network 2018.1.1        |          |  |  |  |  |

| Manhole | Schedules | for | Surface | Network | 2 |
|---------|-----------|-----|---------|---------|---|
|         |           |     |         |         |   |

| MH<br>Name | MH<br>CL (m) | MH<br>Depth<br>(m) | Coni      | MH<br>nection | MH<br>Diam.,L*W<br>(mm) | PN    | Pipe Out<br>Invert<br>Level (m) | Diameter<br>(mm) | PN    | Pipes In<br>Invert<br>Level (m) | Diameter<br>(mm) | Backdrop<br>(mm) |
|------------|--------------|--------------------|-----------|---------------|-------------------------|-------|---------------------------------|------------------|-------|---------------------------------|------------------|------------------|
| S72        | 55.620       | 1.425              | Open      | Manhole       | 1200                    | 1.000 | 54.195                          | 225              |       |                                 |                  |                  |
| s73        | 55.035       | 1.425              | Open      | Manhole       | 1200                    | 1.001 | 53.610                          | 225              | 1.000 | 53.610                          | 225              |                  |
| S86        | 55.327       | 1.425              | -<br>Open | Manhole       | 1200                    | 2.000 | 53.902                          | 225              |       |                                 |                  |                  |
| S74        | 54.266       | 1.425              | Open      | Manhole       | 900 x 675               | 1.002 | 52.841                          | 225              | 1.001 | 52.841                          | 225              |                  |
|            |              |                    |           |               |                         |       |                                 |                  | 2.000 | 52.841                          | 225              |                  |
| S75        | 54.038       | 1.425              | Open      | Manhole       | 1200                    | 3.000 | 52.613                          | 300              |       |                                 |                  |                  |
| S76        | 53.905       | 1.575              | Open      | Manhole       | 1200                    | 1.003 | 52.330                          | 375              | 1.002 | 52.330                          | 225              |                  |
|            |              |                    |           |               |                         |       |                                 |                  | 3.000 | 52.330                          | 300              |                  |
| S77        | 53.393       | 1.364              | Open      | Manhole       | 1200                    | 4.000 | 52.029                          | 300              |       |                                 |                  |                  |
| S78        | 53.206       | 1.483              | Open      | Manhole       | 1350                    | 1.004 | 51.723                          | 375              | 1.003 | 51.723                          | 375              |                  |
|            |              |                    |           |               |                         |       |                                 |                  | 4.000 | 51.723                          | 300              |                  |
| S79        | 52.963       | 1.373              | Open      | Manhole       | 900 x 825               | 1.005 | 51.590                          | 375              | 1.004 | 51.590                          | 375              |                  |
| S80        | 52.887       | 1.375              | Open      | Manhole       | 900 x 825               | 1.006 | 51.512                          | 375              | 1.005 | 51.512                          | 375              |                  |
| S81        | 52.709       | 1.047              | Open      | Manhole       | 900 x 675               | 5.000 | 51.662                          | 225              |       |                                 |                  |                  |
| S82        | 52.738       | 1.225              | Open      | Manhole       | 900 x 675               | 5.001 | 51.513                          | 225              | 5.000 | 51.513                          | 225              |                  |
| S83        | 52.782       | 1.395              | Open      | Manhole       | 900 x 825               | 1.007 | 51.387                          | 450              | 1.006 | 51.388                          | 375              |                  |
|            |              |                    |           |               |                         |       |                                 |                  | 5.001 | 51.387                          | 225              |                  |
| S84        | 52.684       | 1.410              | Open      | Manhole       | 900 x 825               | 1.008 | 51.274                          | 450              | 1.007 | 51.274                          | 450              |                  |
| S85        | 52.700       | 1.450              | Open      | Manhole       | 1350                    |       | OUTFALL                         |                  | 1.008 | 51.250                          | 450              |                  |

| Walsh Design Group                     |                         |          |  |  |  |  |
|----------------------------------------|-------------------------|----------|--|--|--|--|
| The Mall, Maryborough Woods            | Residential Development |          |  |  |  |  |
| Douglas                                | Coolcarron              |          |  |  |  |  |
| Co. Cork Ireland                       | Fermoy                  | Mirro    |  |  |  |  |
| Date 03/03/2022 09:03                  | Designed by IR          | Dcainago |  |  |  |  |
| File Coolcarron_Model_4.1_DRAINAGE.mdx | Checked by MW           | Diamaye  |  |  |  |  |
| XP Solutions                           | Network 2018.1.1        | •        |  |  |  |  |

#### PIPELINE SCHEDULES for Surface Network 2

#### Upstream Manhole

| PN    | Hyd<br>Sect | Diam<br>(mm) | MH<br>Name | C.Level<br>(m) | I.Level<br>(m) | D.Depth<br>(m) | MH<br>Connection | MH DIAM., L*W<br>(mm) |
|-------|-------------|--------------|------------|----------------|----------------|----------------|------------------|-----------------------|
| 1.000 | 0           | 225          | S72        | 55.620         | 54.195         | 1.200          | Open Manhole     | 1200                  |
| 1.001 | 0           | 225          | S73        | 55.035         | 53.610         | 1.200          | Open Manhole     | 1200                  |
| 2.000 | 0           | 225          | S86        | 55.327         | 53.902         | 1.200          | Open Manhole     | 1200                  |
| 1.002 | 0           | 225          | S74        | 54.266         | 52.841         | 1.200          | Open Manhole     | 900 x 675             |
| 3.000 | 0           | 300          | S75        | 54.038         | 52.613         | 1.125          | Open Manhole     | 1200                  |
| 1.003 | 0           | 375          | S76        | 53.905         | 52.330         | 1.200          | Open Manhole     | 1200                  |
| 4.000 | 0           | 300          | S77        | 53.393         | 52.029         | 1.064          | Open Manhole     | 1200                  |
| 1.004 | 0           | 375          | S78        | 53.206         | 51.723         | 1.108          | Open Manhole     | 1350                  |
| 1.005 | 0           | 375          | S79        | 52.963         | 51.590         | 0.998          | Open Manhole     | 900 x 825             |
| 1.006 | 0           | 375          | S80        | 52.887         | 51.512         | 1.000          | Open Manhole     | 900 x 825             |
| 5.000 | 0           | 225          | S81        | 52.709         | 51.662         | 0.822          | Open Manhole     | 900 x 675             |
| 5.001 | 0           | 225          | S82        | 52.738         | 51.513         | 1.000          | Open Manhole     | 900 x 675             |
| 1.007 | 0           | 450          | S83        | 52.782         | 51.387         | 0.945          | Open Manhole     | 900 x 825             |
| 1.008 | 0           | 450          | S84        | 52.684         | 51.274         | 0.960          | Open Manhole     | 900 x 825             |

#### Downstream Manhole

| PN    | Length | Slope | MH   | C.Level | Level I.Level D.Depth MH |       | MH DIAM., L*W |           |
|-------|--------|-------|------|---------|--------------------------|-------|---------------|-----------|
|       | (111)  | (1:1) | Name | (111)   | (111)                    | (111) | Connection    | (11011)   |
| 1.000 | 27.726 | 47.4  | S73  | 55.035  | 53.610                   | 1.200 | Open Manhole  | 1200      |
| 1.001 | 53.059 | 69.0  | 574  | 54.200  | 52.841                   | 1.200 | open Mannore  | 900 X 6/5 |
| 2.000 | 29.699 | 28.0  | s74  | 54.266  | 52.841                   | 1.200 | Open Manhole  | 900 x 675 |
| 1.002 | 30.774 | 60.2  | S76  | 53.905  | 52.330                   | 1.350 | Open Manhole  | 1200      |
| 3.000 | 45.172 | 159.6 | S76  | 53.905  | 52.330                   | 1.275 | Open Manhole  | 1200      |
| 1.003 | 64.470 | 106.2 | S78  | 53.206  | 51.723                   | 1.108 | Open Manhole  | 1350      |
| 4.000 | 51.092 | 167.0 | S78  | 53.206  | 51.723                   | 1.183 | Open Manhole  | 1350      |
| 1.004 | 21.258 | 159.8 | S79  | 52.963  | 51.590                   | 0.998 | Open Manhole  | 900 x 825 |
| 1.005 | 19.453 | 250.0 | S80  | 52.887  | 51.512                   | 1.000 | Open Manhole  | 900 x 825 |
| 1.006 | 31.141 | 250.0 | S83  | 52.782  | 51.388                   | 1.019 | Open Manhole  | 900 x 825 |
| 5.000 | 24.815 | 166.7 | S82  | 52.738  | 51.513                   | 1.000 | Open Manhole  | 900 x 675 |
| 5.001 | 6.403  | 50.8  | S83  | 52.782  | 51.387                   | 1.170 | Open Manhole  | 900 x 825 |
| 1.007 | 28.367 | 251.0 | S84  | 52.684  | 51.274                   | 0.960 | Open Manhole  | 900 x 825 |
| 1.008 | 5.958  | 250.0 | S85  | 52.700  | 51.250                   | 1.000 | Open Manhole  | 1350      |

#### Free Flowing Outfall Details for Surface Network 2

Outfall Outfall C. Level I. Level Min D,L W Pipe Number Name (m) (m) I. Level (mm) (mm) (m)

1.008 S85 52.700 51.250 51.250 1350 0

| Walsh Design Group                     |                         |          |  |  |  |  |
|----------------------------------------|-------------------------|----------|--|--|--|--|
| The Mall, Maryborough Woods            | Residential Development |          |  |  |  |  |
| Douglas                                | Coolcarron              |          |  |  |  |  |
| Co. Cork Ireland                       | Fermoy                  | Micro    |  |  |  |  |
| Date 03/03/2022 09:03                  | Designed by IR          | Desinado |  |  |  |  |
| File Coolcarron_Model_4.1_DRAINAGE.mdx | Checked by MW           | Diamage  |  |  |  |  |
| XP Solutions                           | Network 2018.1.1        | 1        |  |  |  |  |

### Simulation Criteria for Surface Network 2

| Volumetric Runoff Coeff         | 0.750 | Additional Flow - % of Total Flow   | 0.000 |
|---------------------------------|-------|-------------------------------------|-------|
| Areal Reduction Factor          | 1.000 | MADD Factor * 10m³/ha Storage       | 2.000 |
| Hot Start (mins)                | 0     | Inlet Coeffiecient                  | 0.800 |
| Hot Start Level (mm)            | 0     | Flow per Person per Day (l/per/day) | 0.000 |
| Manhole Headloss Coeff (Global) | 0.500 | Run Time (mins)                     | 60    |
| Foul Sewage per hectare (l/s)   | 0.000 | Output Interval (mins)              | 1     |

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

### Synthetic Rainfall Details

| Rainfall Model        |             | FSR        | Profile           | Type Summer |
|-----------------------|-------------|------------|-------------------|-------------|
| Return Period (years) |             | 1          | Cv (Sum           | mer) 0.750  |
| Region                | Scotland ar | nd Ireland | Cv (Win           | ter) 0.840  |
| M5-60 (mm)            |             | 17.000     | Storm Duration (m | ins) 30     |
| Ratio R               |             | 0.200      |                   |             |

| Walsh Design Group                                                           |                                                                                                                                                                                                                             | Page 5    |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| The Mall, Maryborough Woods                                                  | Residential Development                                                                                                                                                                                                     |           |
| Douglas                                                                      | Coolcarron                                                                                                                                                                                                                  |           |
| Co. Cork Ireland                                                             | Micro                                                                                                                                                                                                                       |           |
| Date 03/03/2022 09:03                                                        | Designed by IR                                                                                                                                                                                                              | Dcaipago  |
| File Coolcarron_Model_4.1_DRAINAGE.mdx                                       | Checked by MW                                                                                                                                                                                                               | Diginarie |
| XP Solutions                                                                 | Network 2018.1.1                                                                                                                                                                                                            | 1         |
| <u>Online Cont</u><br><u>Hydro-Brake® Optimum Manh</u><br>Un<br>Des<br>Desig | rols for Surface Network 2<br>ole: S84, DS/PN: 1.008, Volume (m³): 5.4<br>it Reference MD-SHE-0129-6800-0488-6800<br>ign Head (m) 0.488<br>n Flow (1/s) 6.8<br>Flush-Flo™ Calculated<br>Objective Minimice upstream storage |           |
|                                                                              | Application Surface                                                                                                                                                                                                         |           |
| Su                                                                           | mp Available Yes                                                                                                                                                                                                            |           |
| D                                                                            | iameter (mm) 129                                                                                                                                                                                                            |           |
| Inve                                                                         | rt Level (m) 51.274                                                                                                                                                                                                         |           |
| Minimum Outlet Pipe D<br>Suggogted Manhole D                                 | iameter (mm) 150                                                                                                                                                                                                            |           |
| Suggested Mainore D                                                          |                                                                                                                                                                                                                             |           |
| Control Points Head (m) Fl                                                   | Low (l/s) Control Points Head (m) Flow                                                                                                                                                                                      | (l/s)     |
| Design Point (Calculated) 0.488                                              | 6.8 Kick-Flo® 0.374                                                                                                                                                                                                         | 6.0       |
| Flush-Flo™ 0.198                                                             | 6.8 Mean Flow over Head Range -                                                                                                                                                                                             | 5.5       |

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

| Depth (m) | Flow | (1/s) | Depth | (m)  | Flow (1/ | s) | Depth (m | n) Flow | w (l/s) | Depth | (m)  | Flow | (1/s) | Depth | (m) | Flow | (1/s) |
|-----------|------|-------|-------|------|----------|----|----------|---------|---------|-------|------|------|-------|-------|-----|------|-------|
|           |      |       |       |      |          |    |          |         |         |       |      |      |       |       |     |      |       |
| 0.100     |      | 4.6   | Ο.    | .800 | 8        | .6 | 2.00     | 0       | 13.2    | 4     | .000 |      | 18.4  | 7.    | 000 |      | 24.1  |
| 0.200     |      | 6.8   | 1.    | .000 | ç        | .5 | 2.20     | 0       | 13.8    | 4     | .500 |      | 19.5  | 7.    | 500 |      | 25.0  |
| 0.300     |      | 6.6   | 1.    | .200 | 10       | .4 | 2.40     | 0       | 14.4    | 5     | .000 |      | 20.4  | 8.    | 000 |      | 25.8  |
| 0.400     |      | 6.2   | 1.    | .400 | 11       | .2 | 2.60     | 0       | 15.0    | 5     | .500 |      | 21.4  | 8.    | 500 |      | 26.6  |
| 0.500     |      | 6.9   | 1.    | .600 | 11       | .9 | 3.00     | 0       | 16.0    | 6     | .000 |      | 22.3  | 9.    | 000 |      | 27.4  |
| 0.600     |      | 7.5   | 1.    | .800 | 12       | .6 | 3.50     | 00      | 17.3    | 6     | .500 |      | 23.2  | 9.    | 500 |      | 28.1  |

| Walsh Design Group                     |                         |          |  |  |  |
|----------------------------------------|-------------------------|----------|--|--|--|
| The Mall, Maryborough Woods            | Residential Development |          |  |  |  |
| Douglas                                | Coolcarron              |          |  |  |  |
| Co. Cork Ireland                       | Fermoy                  | Mirro    |  |  |  |
| Date 03/03/2022 09:03                  | Designed by IR          | Dcainago |  |  |  |
| File Coolcarron_Model_4.1_DRAINAGE.mdx | Checked by MW           | Diamaye  |  |  |  |
| XP Solutions                           | Network 2018.1.1        |          |  |  |  |

### Storage Structures for Surface Network 2

Tank or Pond Manhole: S84, DS/PN: 1.008

Invert Level (m) 51.274

| Depth (m | ) Area | (m²)  | Depth | (m)   | Area | (m²) | Depth | (m)  | Area | (m²) | Depth | (m) | Area | (m²) | Depth | (m) | Area | (m²) |
|----------|--------|-------|-------|-------|------|------|-------|------|------|------|-------|-----|------|------|-------|-----|------|------|
| 0.00     | 0      | 740.0 | 0     | .600  | 7    | 40.0 | 1     | .200 |      | 0.0  | 1.    | 800 |      | 0.0  | 2.    | 400 |      | 0.0  |
| 0.10     | 0      | 740.0 | 0     | .700  | 7    | 40.0 | 1     | .300 |      | 0.0  | 1.    | 900 |      | 0.0  | 2.    | 500 |      | 0.0  |
| 0.20     | 0      | 740.0 | 0     | . 800 | 7    | 40.0 | 1     | .400 |      | 0.0  | 2.    | 000 |      | 0.0  |       |     |      |      |
| 0.30     | 0      | 740.0 | 0     | .900  | 7    | 40.0 | 1     | .500 |      | 0.0  | 2.    | 100 |      | 0.0  |       |     |      |      |
| 0.40     | 0      | 740.0 | 1     | .000  | 7    | 40.0 | 1     | .600 |      | 0.0  | 2.    | 200 |      | 0.0  |       |     |      |      |
| 0.50     | 0      | 740.0 | 1     | .100  | 7    | 40.0 | 1     | .700 |      | 0.0  | 2.    | 300 |      | 0.0  |       |     |      |      |

| Walsh Design Group                     |                         |          |  |  |  |  |  |
|----------------------------------------|-------------------------|----------|--|--|--|--|--|
| The Mall, Maryborough Woods            | Residential Development |          |  |  |  |  |  |
| Douglas                                | Coolcarron              |          |  |  |  |  |  |
| Co. Cork Ireland                       | Fermoy                  | Mirro    |  |  |  |  |  |
| Date 03/03/2022 09:03                  | Designed by IR          | Drainago |  |  |  |  |  |
| File Coolcarron_Model_4.1_DRAINAGE.mdx | Checked by MW           | Diamage  |  |  |  |  |  |
| XP Solutions                           | Network 2018.1.1        |          |  |  |  |  |  |
|                                        |                         |          |  |  |  |  |  |

#### Summary of Critical Results by Maximum Level (Rank 1) for Surface Network 2

#### Simulation Criteria

Areal Reduction Factor1.000Additional Flow - % of Total Flow 0.000<br/>MADD Factor \* 10m³/ha Storage 2.000<br/>Inlet Coefficient 0.800Manhole Headloss Coeff (Global)0.500Flow per Person per Day (1/per/day)Foul Sewage per hectare (1/s)0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR M5-60 (mm) 17.000 Cv (Summer) 0.750 Region Scotland and Ireland Ratio R 0.200 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 5.0 DVD Status ON Analysis Timestep Fine Inertia Status OFF DTS Status ON

 Profile(s)
 Summer and Winter

 Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440

 Return Period(s) (years)
 1, 30, 100

 Climate Change (%)
 20, 20, 20

| PN    | US/MH<br>Name | St   | orm    | Return<br>Period | Climate<br>Change | First<br>Surch | : (X)<br>harge | First (Y)<br>Flood | First<br>Overfi | (Z)<br>low | Overflow<br>Act. | Water<br>Level<br>(m) | Surcharged<br>Depth<br>(m) | Flooded<br>Volume<br>(m³) |
|-------|---------------|------|--------|------------------|-------------------|----------------|----------------|--------------------|-----------------|------------|------------------|-----------------------|----------------------------|---------------------------|
| 1.000 | S72           | 15   | Winter | 100              | +20%              | 100/15         | Winter         |                    |                 |            |                  | 54.547                | 0.127                      | 0.000                     |
| 1.001 | S73           | 15   | Winter | 100              | +20%              | 30/15          | Winter         |                    |                 |            |                  | 54.509                | 0.674                      | 0.000                     |
| 2.000 | S86           | 15   | Winter | 100              | +20%              | 100/15         | Winter         |                    |                 |            |                  | 54.153                | 0.026                      | 0.000                     |
| 1.002 | S74           | 15   | Winter | 100              | +20%              | 30/15          | Summer         |                    |                 |            |                  | 54.122                | 1.056                      | 0.000                     |
| 3.000 | S75           | 15   | Winter | 100              | +20%              | 30/15          | Summer         |                    |                 |            |                  | 53.976                | 1.063                      | 0.000                     |
| 1.003 | S76           | 30   | Winter | 100              | +20%              | 30/15          | Summer         |                    |                 |            |                  | 53.698                | 0.993                      | 0.000                     |
| 4.000 | S77           | 30   | Winter | 100              | +20%              | 30/15          | Summer         |                    |                 |            |                  | 53.287                | 0.958                      | 0.000                     |
| 1.004 | S78           | 30   | Winter | 100              | +20%              | 30/15          | Summer         |                    |                 |            |                  | 53.190                | 1.092                      | 0.000                     |
| 1.005 | S79           | 30   | Winter | 100              | +20%              | 30/15          | Summer         |                    |                 |            |                  | 52.875                | 0.910                      | 0.000                     |
| 1.006 | S80           | 1440 | Winter | 100              | +20%              | 30/15          | Summer         |                    |                 |            |                  | 52.513                | 0.626                      | 0.000                     |
| 5.000 | S81           | 1440 | Winter | 100              | +20%              | 30/15          | Winter         |                    |                 |            |                  | 52.510                | 0.622                      | 0.000                     |
| 5.001 | S82           | 1440 | Winter | 100              | +20%              | 30/15          | Summer         |                    |                 |            |                  | 52.507                | 0.769                      | 0.000                     |
| 1.007 | S83           | 1440 | Winter | 100              | +20%              | 30/15          | Summer         |                    |                 |            |                  | 52.510                | 0.673                      | 0.000                     |
| 1.008 | S84           | 1440 | Winter | 100              | +20%              | 30/120         | Summer         |                    |                 |            |                  | 52.507                | 0.782                      | 0.000                     |

|       |                                                                                                                 |                                                                                                                                                                                                   | Pipe                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                      |
|-------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| US/MH | Flow /                                                                                                          | Overflow                                                                                                                                                                                          | Flow                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Level                                                                                                                                                                                                                                                                                                                                |
| Name  | Cap.                                                                                                            | (l/s)                                                                                                                                                                                             | (l/s)                                                                                                                                                                                                            | Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Exceeded                                                                                                                                                                                                                                                                                                                             |
| S72   | 0.33                                                                                                            |                                                                                                                                                                                                   | 23.3                                                                                                                                                                                                             | SURCHARGED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                      |
| S73   | 0.92                                                                                                            |                                                                                                                                                                                                   | 55.5                                                                                                                                                                                                             | SURCHARGED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                      |
| S86   | 0.21                                                                                                            |                                                                                                                                                                                                   | 19.1                                                                                                                                                                                                             | SURCHARGED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                      |
| S74   | 0.97                                                                                                            |                                                                                                                                                                                                   | 60.9                                                                                                                                                                                                             | SURCHARGED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                      |
| S75   | 0.99                                                                                                            |                                                                                                                                                                                                   | 81.5                                                                                                                                                                                                             | SURCHARGED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                      |
| S76   | 0.91                                                                                                            |                                                                                                                                                                                                   | 165.9                                                                                                                                                                                                            | SURCHARGED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                      |
| S77   | 0.37                                                                                                            |                                                                                                                                                                                                   | 30.1                                                                                                                                                                                                             | SURCHARGED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                      |
| S78   | 1.54                                                                                                            |                                                                                                                                                                                                   | 205.8                                                                                                                                                                                                            | SURCHARGED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                      |
| S79   | 2.21                                                                                                            |                                                                                                                                                                                                   | 232.3                                                                                                                                                                                                            | SURCHARGED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                      |
| S80   | 0.29                                                                                                            |                                                                                                                                                                                                   | 32.9                                                                                                                                                                                                             | SURCHARGED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                      |
| S81   | 0.05                                                                                                            |                                                                                                                                                                                                   | 1.9                                                                                                                                                                                                              | SURCHARGED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                      |
| S82   | 0.04                                                                                                            |                                                                                                                                                                                                   | 1.8                                                                                                                                                                                                              | SURCHARGED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                      |
| S83   | 0.21                                                                                                            |                                                                                                                                                                                                   | 36.7                                                                                                                                                                                                             | SURCHARGED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                      |
| S84   | 0.08                                                                                                            |                                                                                                                                                                                                   | 10.3                                                                                                                                                                                                             | SURCHARGED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                      |
|       | US/MH<br>Name<br>S72<br>S73<br>S86<br>S74<br>S75<br>S76<br>S77<br>S78<br>S79<br>S80<br>S81<br>S82<br>S83<br>S84 | US/MH Flow /<br>Name Cap.<br>S72 0.33<br>S73 0.92<br>S86 0.21<br>S74 0.97<br>S75 0.99<br>S76 0.91<br>S77 0.37<br>S78 1.54<br>S79 2.21<br>S80 0.29<br>S81 0.05<br>S82 0.04<br>S83 0.21<br>S84 0.08 | US/MH Flow / Overflow<br>Name Cap. (1/s)<br>S72 0.33<br>S73 0.92<br>S86 0.21<br>S74 0.97<br>S75 0.99<br>S76 0.91<br>S77 0.37<br>S78 1.54<br>S79 2.21<br>S80 0.29<br>S81 0.05<br>S82 0.04<br>S83 0.21<br>S84 0.08 | Pipe           US/MH         Flow /         Overflow         Flow           Name         Cap.         (1/s)         (1/s)           S72         0.33         23.3           S73         0.92         55.5           S86         0.21         19.1           S74         0.97         60.9           S75         0.99         81.5           S76         0.91         165.9           S77         0.37         30.1           S78         1.54         205.8           S79         2.21         232.3           S80         0.29         32.9           S81         0.05         1.9           S82         0.04         1.8           S83         0.21         36.7           S84         0.08         10.3 | PipeUS/MHFlow /OverflowFlowNameCap.(1/s)(1/s)StatusS720.3323.3SURCHARGEDS730.9255.5SURCHARGEDS860.2119.1SURCHARGEDS740.9760.9SURCHARGEDS750.9981.5SURCHARGEDS760.91165.9SURCHARGEDS770.3730.1SURCHARGEDS781.54205.8SURCHARGEDS800.2932.9SURCHARGEDS810.051.9SURCHARGEDS820.041.8SURCHARGEDS830.2136.7SURCHARGEDS840.0810.3SURCHARGED |
| Walsh Design Group                     |                         | Page 0   |
|----------------------------------------|-------------------------|----------|
| The Mall, Maryborough Woods            | Residential Development |          |
| Douglas                                | Coolcarron              |          |
| Co. Cork Ireland                       | Fermoy                  | Micro    |
| Date 03/03/2022 09:05                  | Designed by IR          | Dcainago |
| File Coolcarron_Model_4.1_DRAINAGE.mdx | Checked by MW           | Diamaye  |
| XP Solutions                           | Network 2018.1.1        |          |

### STORM SEWER DESIGN by the Modified Rational Method

#### Design Criteria for Surface Network 3

Pipe Sizes Storm Manhole Sizes IW-MH

FSR Rainfall Model - Scotland and IrelandReturn Period (years)1PIMP (%)100M5-60 (mm)17.000Add Flow / Climate Change (%)0Ratio R0.200Minimum Backdrop Height (m)0.200Maximum Rainfall (mm/hr)50Maximum Backdrop Height (m)2.500Maximum Time of Concentration (mins)30Min Design Depth for Optimisation (m)1.200Foul Sewage (l/s/ha)0.000Min Vel for Auto Design only (m/s)1.00Volumetric Runoff Coeff.0.750Min Slope for Optimisation (1:X)500

Designed with Level Inverts

Time Area Diagram for Surface Network 3

| Time   | Area  | Time   | Area  |
|--------|-------|--------|-------|
| (mins) | (ha)  | (mins) | (ha)  |
| 0-4    | 0.235 | 4-8    | 0.224 |

Total Area Contributing (ha) = 0.459

Total Pipe Volume (m<sup>3</sup>) = 13.684

#### Network Design Table for Surface Network 3

| PN                      | Length<br>(m)             | Fall<br>(m)             | Slope<br>(1:X)          | I.Area<br>(ha)          | T.E.<br>(mins)       | Ba<br>Flow | ase<br>(l/s)      | k<br>(mm)               | HYD<br>SECT | DIA<br>(mm)       | Section Type                                 | Auto<br>Design |
|-------------------------|---------------------------|-------------------------|-------------------------|-------------------------|----------------------|------------|-------------------|-------------------------|-------------|-------------------|----------------------------------------------|----------------|
| 1.000                   | 57.975                    | 0.348                   | 166.7                   | 0.122                   | 5.00                 |            | 0.0               | 0.600                   | 0           | 225               | Pipe/Conduit                                 | 8              |
| 2.000                   | 42.465                    | 0.443                   | 95.8                    | 0.121                   | 5.00                 |            | 0.0               | 0.600                   | 0           | 225               | Pipe/Conduit                                 | 8              |
| 1.001<br>1.002<br>1.003 | 15.283<br>5.796<br>61.491 | 0.092<br>0.035<br>0.369 | 166.7<br>166.7<br>166.6 | 0.013<br>0.000<br>0.104 | 0.00<br>0.00<br>0.00 |            | 0.0<br>0.0<br>0.0 | 0.600<br>0.600<br>0.600 | 0<br>0<br>0 | 225<br>225<br>300 | Pipe/Conduit<br>Pipe/Conduit<br>Pipe/Conduit | 8<br>8<br>8    |
| 3.000                   | 68.907                    | 0.429                   | 160.6                   | 0.098                   | 5.00                 |            | 0.0               | 0.600                   | 0           | 225               | Pipe/Conduit                                 | ۵              |
| 1.004                   | 4.165                     | 0.025                   | 166.6                   | 0.000                   | 0.00                 |            | 0.0               | 0.600                   | 0           | 300               | Pipe/Conduit                                 | •              |

| PN    | Rain<br>(mm/hr) | T.C.<br>(mins) | US/IL<br>(m) | Σ I.Area<br>(ha) | Σ Base<br>Flow (l/s) | Foul<br>(l/s) | Add Flow<br>(l/s) | Vel<br>(m/s) | Cap<br>(1/s) | Flow<br>(1/s) |
|-------|-----------------|----------------|--------------|------------------|----------------------|---------------|-------------------|--------------|--------------|---------------|
| 1.000 | 33.43           | 5.96           | 52.004       | 0.122            | 0.0                  | 0.0           | 0.0               | 1.01         | 40.1         | 11.0          |
| 2.000 | 34.29           | 5.53           | 52.099       | 0.121            | 0.0                  | 0.0           | 0.0               | 1.34         | 53.1         | 11.3          |
| 1.001 | 32.96           | 6.21           | 51.656       | 0.257            | 0.0                  | 0.0           | 0.0               | 1.01         | 40.1         | 22.9          |
| 1.002 | 32.78           | 6.30           | 51.564       | 0.257            | 0.0                  | 0.0           | 0.0               | 1.01         | 40.1         | 22.9          |
| 1.003 | 31.36           | 7.15           | 51.530       | 0.361            | 0.0                  | 0.0           | 0.0               | 1.22         | 85.9         | 30.7          |
| 3.000 | 33.13           | 6.12           | 51.590       | 0.098            | 0.0                  | 0.0           | 0.0               | 1.03         | 40.9         | 8.8           |
| 1.004 | 31.27           | 7.21           | 51.161       | 0.459            | 0.0                  | 0.0           | 0.0               | 1.22         | 85.9         | 38.9          |

| Walsh Design Group                     |                         | Page 1   |
|----------------------------------------|-------------------------|----------|
| The Mall, Maryborough Woods            | Residential Development |          |
| Douglas                                | Coolcarron              |          |
| Co. Cork Ireland                       | Fermoy                  | Micro    |
| Date 03/03/2022 09:05                  | Designed by IR          | Desinado |
| File Coolcarron_Model_4.1_DRAINAGE.mdx | Checked by MW           | Diamaye  |
| XP Solutions                           | Network 2018.1.1        |          |

# Network Design Table for Surface Network 3

| PN    | Length<br>(m) | Fall<br>(m) | Slope<br>(1:X) | I.Area<br>(ha) | T.E.<br>(mins) | Ba<br>Flow | ise<br>(l/s) | k<br>(mm) | HYD<br>SECT | DIA<br>(mm) | Section Type | Auto<br>Design |
|-------|---------------|-------------|----------------|----------------|----------------|------------|--------------|-----------|-------------|-------------|--------------|----------------|
| 4.000 | 26.383        | 0.234       | 112.8          | 0.000          | 5.00           |            | 0.0          | 0.600     | 0           | 225         | Pipe/Conduit | Ô              |
| 1.005 | 5.971         | 0.036       | 166.7          | 0.000          | 0.00           |            | 0.0          | 0.600     | 0           | 300         | Pipe/Conduit | 0              |

| PN    | Rain<br>(mm/hr) | T.C.<br>(mins) | US/IL<br>(m) | Σ I.Area<br>(ha) | Σ B<br>Flow | Base<br>(1/s) | Foul<br>(l/s) | Add Flow<br>(l/s) | Vel<br>(m/s) | Cap<br>(1/s) | Flow<br>(1/s) |
|-------|-----------------|----------------|--------------|------------------|-------------|---------------|---------------|-------------------|--------------|--------------|---------------|
| 4.000 | 34.65           | 5.36           | 51.370       | 0.000            |             | 0.0           | 0.0           | 0.0               | 1.23         | 48.9         | 0.0           |
| 1.005 | 31.15           | 7.29           | 51.136       | 0.459            |             | 0.0           | 0.0           | 0.0               | 1.21         | 85.9         | 38.9          |

| Walsh Design Group                     |                         | Page 2   |
|----------------------------------------|-------------------------|----------|
| The Mall, Maryborough Woods            | Residential Development |          |
| Douglas                                | Coolcarron              |          |
| Co. Cork Ireland                       | Fermoy                  | Micro    |
| Date 03/03/2022 09:05                  | Designed by IR          | Desinado |
| File Coolcarron_Model_4.1_DRAINAGE.mdx | Checked by MW           | Diamaye  |
| XP Solutions                           | Network 2018.1.1        |          |

|  | Manhole | Schedules | for | Surface | Network | 3 |
|--|---------|-----------|-----|---------|---------|---|
|--|---------|-----------|-----|---------|---------|---|

| MH<br>Name | MH<br>CL (m) | MH<br>Depth<br>(m) | Conr | MH<br>nection | MH<br>Diam.,L*W<br>(mm) | PN    | Pipe Out<br>Invert<br>Level (m) | Diameter<br>(mm) | PN    | Pipes In<br>Invert<br>Level (m) | Diameter<br>(mm) | Backdrop<br>(mm) |
|------------|--------------|--------------------|------|---------------|-------------------------|-------|---------------------------------|------------------|-------|---------------------------------|------------------|------------------|
|            |              |                    |      |               |                         |       |                                 |                  |       |                                 |                  |                  |
| S62        | 53.334       | 1.330              | Open | Manhole       | 1200                    | 1.000 | 52.004                          | 225              |       |                                 |                  |                  |
| S63        | 53.430       | 1.330              | Open | Manhole       | 1200                    | 2.000 | 52.099                          | 225              |       |                                 |                  |                  |
| S64        | 53.265       | 1.609              | Open | Manhole       | 1200                    | 1.001 | 51.656                          | 225              | 1.000 | 51.656                          | 225              |                  |
|            |              |                    |      |               |                         |       |                                 |                  | 2.000 | 51.656                          | 225              |                  |
| S65        | 53.136       | 1.571              | Open | Manhole       | 1200                    | 1.002 | 51.564                          | 225              | 1.001 | 51.564                          | 225              |                  |
| S66        | 53.093       | 1.563              | Open | Manhole       | 1200                    | 1.003 | 51.530                          | 300              | 1.002 | 51.530                          | 225              |                  |
| S67        | 52.695       | 1.105              | Open | Manhole       | 900 x 675               | 3.000 | 51.590                          | 225              |       |                                 |                  |                  |
| S68        | 52.693       | 1.533              | Open | Manhole       | 1200                    | 1.004 | 51.161                          | 300              | 1.003 | 51.161                          | 300              |                  |
|            |              |                    |      |               |                         |       |                                 |                  | 3.000 | 51.161                          | 225              |                  |
| S69        | 52.700       | 1.330              | Open | Manhole       | 900 x 675               | 4.000 | 51.370                          | 225              |       |                                 |                  |                  |
| S70        | 52.700       | 1.564              | Open | Manhole       | 1200                    | 1.005 | 51.136                          | 300              | 1.004 | 51.136                          | 300              |                  |
|            |              |                    |      |               |                         |       |                                 |                  | 4.000 | 51.136                          | 225              |                  |
| S71        | 52.700       | 1.600              | Open | Manhole       | 1200                    |       | OUTFALL                         |                  | 1.005 | 51.100                          | 300              |                  |

| Walsh Design Group                     |                         | Page 3   |
|----------------------------------------|-------------------------|----------|
| The Mall, Maryborough Woods            | Residential Development |          |
| Douglas                                | Coolcarron              |          |
| Co. Cork Ireland                       | Fermoy                  | Mirro    |
| Date 03/03/2022 09:05                  | Designed by IR          | Desinado |
| File Coolcarron_Model_4.1_DRAINAGE.mdx | Checked by MW           | Diamaye  |
| XP Solutions                           | Network 2018.1.1        |          |

### PIPELINE SCHEDULES for Surface Network 3

#### Upstream Manhole

| PN    | Hyd<br>Sect | Diam<br>(mm) | MH<br>Name | C.Level<br>(m) | I.Level<br>(m) | D.Depth<br>(m) | MH<br>Connection | MH DIAM., L*W<br>(mm) |
|-------|-------------|--------------|------------|----------------|----------------|----------------|------------------|-----------------------|
| 1.000 | 0           | 225          | S62        | 53.334         | 52.004         | 1.105          | Open Manhole     | 1200                  |
| 2.000 | 0           | 225          | S63        | 53.430         | 52.099         | 1.105          | Open Manhole     | 1200                  |
| 1.001 | 0           | 225          | S64        | 53.265         | 51.656         | 1.384          | Open Manhole     | 1200                  |
| 1.002 | 0           | 225          | S65        | 53.136         | 51.564         | 1.346          | Open Manhole     | 1200                  |
| 1.003 | 0           | 300          | S66        | 53.093         | 51.530         | 1.263          | Open Manhole     | 1200                  |
| 3.000 | 0           | 225          | S67        | 52.695         | 51.590         | 0.880          | Open Manhole     | 900 x 675             |
| 1.004 | 0           | 300          | S68        | 52.693         | 51.161         | 1.233          | Open Manhole     | 1200                  |
| 4.000 | 0           | 225          | S69        | 52.700         | 51.370         | 1.105          | Open Manhole     | 900 x 675             |
| 1.005 | 0           | 300          | S70        | 52.700         | 51.136         | 1.264          | Open Manhole     | 1200                  |

### Downstream Manhole

| PN    | Length<br>(m) | Slope<br>(1:X) | MH<br>Name | C.Level<br>(m) | I.Level<br>(m) | D.Depth<br>(m) | MH<br>Connection | MH DIAM., L*W<br>(mm) |
|-------|---------------|----------------|------------|----------------|----------------|----------------|------------------|-----------------------|
| 1.000 | 57.975        | 166.7          | S64        | 53.265         | 51.656         | 1.384          | Open Manhole     | e 1200                |
| 2.000 | 42.465        | 95.8           | S64        | 53.265         | 51.656         | 1.384          | Open Manhole     | e 1200                |
| 1.001 | 15.283        | 166.7          | S65        | 53.136         | 51.564         | 1.346          | Open Manhole     | e 1200                |
| 1.002 | 5.796         | 166.7          | S66        | 53.093         | 51.530         | 1.338          | Open Manhole     | e 1200                |
| 1.003 | 61.491        | 166.6          | S68        | 52.693         | 51.161         | 1.233          | Open Manhole     | e 1200                |
| 3.000 | 68.907        | 160.6          | S68        | 52.693         | 51.161         | 1.307          | Open Manhole     | e 1200                |
| 1.004 | 4.165         | 166.6          | S70        | 52.700         | 51.136         | 1.264          | Open Manhole     | e 1200                |
| 4.000 | 26.383        | 112.8          | S70        | 52.700         | 51.136         | 1.339          | Open Manhole     | e 1200                |
| 1.005 | 5.971         | 166.7          | S71        | 52.700         | 51.100         | 1.300          | Open Manhole     | e 1200                |

### Free Flowing Outfall Details for Surface Network 3

| Outfall     | Outfall | c.  | Level | I. | Level |    | Min   | D,L  | W    |
|-------------|---------|-----|-------|----|-------|----|-------|------|------|
| Pipe Number | Name    | (m) |       |    | (m)   | I. | Level | (mm) | (mm) |
|             |         |     |       |    |       |    | (m)   |      |      |

1.005 S71 52.700 51.100 0.000 1200 0

### Simulation Criteria for Surface Network 3

| 0.000 | % of Total Flow  | Additional Flow -   | 0.750 | Volumetric Runoff Coeff         |
|-------|------------------|---------------------|-------|---------------------------------|
| 2.000 | 10m³/ha Storage  | MADD Factor *       | 1.000 | Areal Reduction Factor          |
| 0.800 | let Coeffiecient | Inl                 | 0     | Hot Start (mins)                |
| 0.000 | Day (l/per/day)  | Flow per Person per | 0     | Hot Start Level (mm)            |
| 60    | Run Time (mins)  |                     | 0.500 | Manhole Headloss Coeff (Global) |
| 1     | Interval (mins)  | Output              | 0.000 | Foul Sewage per hectare (l/s)   |

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

## Synthetic Rainfall Details

| Walsh Design Group                     |                         | Page 4   |
|----------------------------------------|-------------------------|----------|
| The Mall, Maryborough Woods            | Residential Development |          |
| Douglas                                | Coolcarron              |          |
| Co. Cork Ireland                       | Fermoy                  | Mirro    |
| Date 03/03/2022 09:05                  | Designed by IR          | Desinado |
| File Coolcarron_Model_4.1_DRAINAGE.mdx | Checked by MW           | Diamaye  |
| XP Solutions                           | Network 2018.1.1        |          |

# Simulation Criteria for Surface Network 3

|        | Rainfall Model |          |     | FSR     |       | Prof    | ile Type | Summer |
|--------|----------------|----------|-----|---------|-------|---------|----------|--------|
| Return | Period (years) |          |     | 1       |       | Cv      | (Summer) | 0.750  |
|        | Region         | Scotland | and | Ireland |       | Cv      | (Winter) | 0.840  |
|        | M5-60 (mm)     |          |     | 17.000  | Storm | Duratio | n (mins) | 30     |
|        | Ratio R        |          |     | 0.200   |       |         |          |        |

|                                                 |                                                                        | 1        |
|-------------------------------------------------|------------------------------------------------------------------------|----------|
| Walsh Design Group                              |                                                                        | Page 5   |
| The Mall, Maryborough Woods                     | Residential Development                                                |          |
| Douglas                                         | Coolcarron                                                             |          |
| Co. Cork Ireland                                | Fermoy                                                                 | Mirro    |
| Date 03/03/2022 09:05                           | Designed by IR                                                         | Desinado |
| File Coolcarron_Model_4.1_DRAINAGE.mdx          | Checked by MW                                                          | Diamage  |
| XP Solutions                                    | Network 2018.1.1                                                       | 1        |
| <u>Online Cont</u><br>Hydro-Brake® Optimum Manh | rols for Surface Network 3<br>ole: S70, DS/PN: 1.005, Volume (m³): 3.0 |          |
| Un                                              | it Reference MD-SHE-0096-3800-0747-3800                                |          |
| Des                                             | ign Head (m) 0.747                                                     |          |
| Desig                                           | n Flow (1/s) 3.8                                                       |          |
|                                                 | Flush-Flo™ Calculated                                                  |          |
|                                                 | Objective Minimise upstream storage                                    |          |
|                                                 | Application Surface                                                    |          |
| Su                                              | mp Available Yes                                                       |          |
| D                                               | iameter (mm) 96                                                        |          |
| Inve                                            | rt Level (m) 51.136                                                    |          |
| Minimum Outlet Pipe D                           | lameter (mm) 150                                                       |          |
| Suggested Mannole D                             | lameter (mm) 1200                                                      |          |
| Control Points Head (m) Fl                      | Low (l/s) Control Points Head (m) Flow                                 | (1/s)    |
| Design Point (Calculated) 0.747                 | 3.8 Kick-Flo® 0.495                                                    | 3.1      |
| Flush-Flo™ 0.222                                | 3.8 Mean Flow over Head Range -                                        | 3.3      |

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

| Depth (m) | Flow (1/ | /s) | Depth | (m)  | Flow ( | (1/s) | Depth | (m)  | Flow | (l/s) | Depth | (m) | Flow | (1/s) | Depth | (m) | Flow | (l/s) |
|-----------|----------|-----|-------|------|--------|-------|-------|------|------|-------|-------|-----|------|-------|-------|-----|------|-------|
|           |          |     |       |      |        |       |       |      |      |       |       |     |      |       |       |     |      |       |
| 0.100     | 3        | 3.1 | 0.    | .800 |        | 3.9   | 2.    | .000 |      | 6.0   | 4.    | 000 |      | 8.3   | 7.    | 000 |      | 10.9  |
| 0.200     | 3        | 3.8 | 1.    | .000 |        | 4.3   | 2.    | 200  |      | 6.3   | 4.    | 500 |      | 8.8   | 7.    | 500 |      | 11.2  |
| 0.300     | 3        | 3.7 | 1.    | .200 |        | 4.7   | 2.    | 400  |      | 6.5   | 5.    | 000 |      | 9.2   | 8.    | 000 |      | 11.6  |
| 0.400     | 3        | 3.6 | 1.    | .400 |        | 5.1   | 2.    | 600  |      | 6.8   | 5.    | 500 |      | 9.7   | 8.    | 500 |      | 11.9  |
| 0.500     | 3        | 3.2 | 1.    | .600 |        | 5.4   | 3.    | 000  |      | 7.3   | 6.    | 000 |      | 10.1  | 9.    | 000 |      | 12.3  |
| 0.600     | 3        | 3.4 | 1.    | .800 |        | 5.7   | 3.    | 500  |      | 7.8   | 6.    | 500 |      | 10.5  | 9.    | 500 |      | 12.6  |

| Walsh Design Group                     |                         | Page 6   |
|----------------------------------------|-------------------------|----------|
| The Mall, Maryborough Woods            | Residential Development |          |
| Douglas                                | Coolcarron              |          |
| Co. Cork Ireland                       | Fermoy                  | Mirro    |
| Date 03/03/2022 09:05                  | Designed by IR          | Dcainago |
| File Coolcarron_Model_4.1_DRAINAGE.mdx | Checked by MW           | Diamaye  |
| XP Solutions                           | Network 2018.1.1        |          |

## Storage Structures for Surface Network 3

Tank or Pond Manhole: S70, DS/PN: 1.005

Invert Level (m) 51.136

| Depth (m) | Area | (m²) | Depth | (m) | Area | (m²) | Depth | (m)  | Area | (m²) | Depth | (m) | Area | (m²) | Depth | (m) | Area | (m²) |
|-----------|------|------|-------|-----|------|------|-------|------|------|------|-------|-----|------|------|-------|-----|------|------|
| 0.000     | 23   | 25.0 | 1.    | 200 |      | 0.0  | 2.    | .400 |      | 0.0  | 3.    | 600 |      | 0.0  | 4.    | 800 |      | 0.0  |
| 0.200     | 2    | 25.0 | 1.    | 400 |      | 0.0  | 2.    | .600 |      | 0.0  | 3.    | 800 |      | 0.0  | 5.    | 000 |      | 0.0  |
| 0.400     | 2:   | 25.0 | 1.    | 600 |      | 0.0  | 2.    | .800 |      | 0.0  | 4.    | 000 |      | 0.0  |       |     |      |      |
| 0.600     | 2    | 25.0 | 1.    | 800 |      | 0.0  | 3.    | .000 |      | 0.0  | 4.    | 200 |      | 0.0  |       |     |      |      |
| 0.800     | 2:   | 25.0 | 2.    | 000 |      | 0.0  | 3.    | .200 |      | 0.0  | 4.    | 400 |      | 0.0  |       |     |      |      |
| 1.000     | 2    | 25.0 | 2.    | 200 |      | 0.0  | 3.    | .400 |      | 0.0  | 4.    | 600 |      | 0.0  |       |     |      |      |

| alsh Design Group                      |                         |          |  |  |  |  |  |
|----------------------------------------|-------------------------|----------|--|--|--|--|--|
| The Mall, Maryborough Woods            | Residential Development |          |  |  |  |  |  |
| Douglas                                | Coolcarron              |          |  |  |  |  |  |
| Co. Cork Ireland                       | Fermoy                  | Mirro    |  |  |  |  |  |
| Date 03/03/2022 09:05                  | Designed by IR          | Desinado |  |  |  |  |  |
| File Coolcarron_Model_4.1_DRAINAGE.mdx | Checked by MW           | Diamage  |  |  |  |  |  |
| XP Solutions                           | Network 2018.1.1        |          |  |  |  |  |  |
|                                        |                         |          |  |  |  |  |  |

## Summary of Critical Results by Maximum Level (Rank 1) for Surface Network 3

### Simulation Criteria

Areal Reduction Factor1.000Additional Flow - % of Total Flow 0.000<br/>MADD Factor \* 10m³/ha Storage 2.000<br/>Inlet Coefficient 0.800Manhole Headloss Coeff (Global)0.500Flow per Person per Day (l/per/day)Foul Sewage per hectare (l/s)0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR M5-60 (mm) 17.000 Cv (Summer) 0.750 Region Scotland and Ireland Ratio R 0.200 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 5.0 DVD Status ON Analysis Timestep Fine Inertia Status OFF DTS Status ON

| Profile(s)               |         |          |           |           | Summer and Winter   |
|--------------------------|---------|----------|-----------|-----------|---------------------|
| Duration(s) (mins)       | 15, 30, | 60, 120, | 180, 240, | 360, 480, | 600, 720, 960, 1440 |
| Return Period(s) (years) |         |          |           |           | 1, 30, 100          |
| Climate Change (%)       |         |          |           |           | 20, 20, 20          |

| PN    | US/MH<br>Name | s   | torm   | Return<br>Period | Climate<br>Change | First<br>Surch | : (X)<br>harge | First (Y)<br>Flood | First (Z)<br>Overflow | Overflow<br>Act. | Water<br>Level<br>(m) | Surcharged<br>Depth<br>(m) | Flooded<br>Volume<br>(m³) |
|-------|---------------|-----|--------|------------------|-------------------|----------------|----------------|--------------------|-----------------------|------------------|-----------------------|----------------------------|---------------------------|
| 1.000 | S62           | 15  | Winter | 100              | +20%              | 30/15          | Summer         |                    |                       |                  | 52.830                | 0.601                      | 0.000                     |
| 2.000 | S63           | 15  | Winter | 100              | +20%              | 30/15          | Winter         |                    |                       |                  | 52.770                | 0.446                      | 0.000                     |
| 1.001 | S64           | 15  | Winter | 100              | +20%              | 30/15          | Summer         |                    |                       |                  | 52.591                | 0.710                      | 0.000                     |
| 1.002 | S65           | 960 | Winter | 100              | +20%              | 30/15          | Summer         |                    |                       |                  | 52.445                | 0.655                      | 0.000                     |
| 1.003 | S66           | 960 | Winter | 100              | +20%              | 30/15          | Winter         |                    |                       |                  | 52.442                | 0.613                      | 0.000                     |
| 3.000 | S67           | 960 | Winter | 100              | +20%              | 30/240         | Winter         |                    |                       |                  | 52.419                | 0.604                      | 0.000                     |
| 1.004 | S68           | 960 | Winter | 100              | +20%              | 1/480          | Winter         |                    |                       |                  | 52.450                | 0.990                      | 0.000                     |
| 4.000 | S69           | 960 | Winter | 100              | +20%              | 30/120         | Summer         |                    |                       |                  | 52.452                | 0.857                      | 0.000                     |
| 1.005 | S70           | 960 | Winter | 100              | +20%              | 1/360          | Winter         |                    |                       |                  | 52.452                | 1.016                      | 0.000                     |

|       |       |        |          | Pipe  |            |          |
|-------|-------|--------|----------|-------|------------|----------|
|       | US/MH | Flow / | Overflow | Flow  |            | Level    |
| PN    | Name  | Cap.   | (1/s)    | (l/s) | Status     | Exceeded |
|       |       |        |          |       |            |          |
| 1.000 | S62   | 0.81   |          | 31.3  | SURCHARGED |          |
| 2.000 | S63   | 0.70   |          | 35.2  | SURCHARGED |          |
| 1.001 | S64   | 1.86   |          | 65.8  | SURCHARGED |          |
| 1.002 | S65   | 0.34   |          | 10.2  | SURCHARGED |          |
| 1.003 | S66   | 0.18   |          | 14.4  | SURCHARGED |          |
| 3.000 | S67   | 0.10   |          | 3.9   | SURCHARGED |          |
| 1.004 | S68   | 0.33   |          | 17.9  | SURCHARGED |          |
| 4.000 | S69   | 0.00   |          | 0.0   | SURCHARGED |          |
| 1.005 | S70   | 0.08   |          | 4.8   | SURCHARGED |          |
|       |       |        |          |       |            |          |

| Walsh Design Group                     |                         | Page 0   |
|----------------------------------------|-------------------------|----------|
| The Mall, Maryborough Woods            | Residential Development |          |
| Douglas                                | Coolcarron              |          |
| Co. Cork Ireland                       | Fermoy                  | Micro    |
| Date 03/03/2022 09:11                  | Designed by IR          | Desinado |
| File Coolcarron_Model_4.1_DRAINAGE.mdx | Checked by MW           | Diamaye  |
| XP Solutions                           | Network 2018.1.1        |          |

## STORM SEWER DESIGN by the Modified Rational Method

## Design Criteria for Surface Network 4

Pipe Sizes Storm Manhole Sizes IW-MH

| FSR Rainfall 1                       | Model - | Scotland and Ireland                  |       |
|--------------------------------------|---------|---------------------------------------|-------|
| Return Period (years)                | 1       | PIMP (%)                              | 100   |
| M5-60 (mm)                           | 17.000  | Add Flow / Climate Change (%)         | 0     |
| Ratio R                              | 0.200   | Minimum Backdrop Height (m)           | 0.200 |
| Maximum Rainfall (mm/hr)             | 50      | Maximum Backdrop Height (m)           | 2.500 |
| Maximum Time of Concentration (mins) | 30      | Min Design Depth for Optimisation (m) | 1.200 |
| Foul Sewage (l/s/ha)                 | 0.000   | Min Vel for Auto Design only (m/s)    | 1.00  |
| Volumetric Runoff Coeff.             | 0.750   | Min Slope for Optimisation (1:X)      | 500   |
|                                      |         |                                       |       |

Designed with Level Inverts

## Network Design Table for Surface Network 4

| PN    | Length<br>(m) | Fall<br>(m) | Slope<br>(1:X) | I.Area<br>(ha) | T.E.<br>(mins) | Ba<br>Flow | lse<br>(l/s) | k<br>(mm) | HYD<br>SECT | DIA<br>(mm) | Section Type | Auto<br>Design |
|-------|---------------|-------------|----------------|----------------|----------------|------------|--------------|-----------|-------------|-------------|--------------|----------------|
| 1.000 | 28.255        | 0.518       | 54.6           | 0.018          | 5.00           |            | 0.0          | 0.600     | 0           | 225         | Pipe/Conduit | 0              |
| 2.000 | 13.332        | 0.080       | 166.7          | 0.044          | 5.00           |            | 0.0          | 0.600     | 0           | 225         | Pipe/Conduit | ٥              |
| 1.001 | 23.498        | 0.141       | 166.7          | 0.035          | 0.00           |            | 0.0          | 0.600     | 0           | 225         | Pipe/Conduit | ۵              |
| 3.000 | 38.186        | 0.747       | 51.1           | 0.086          | 5.00           |            | 0.0          | 0.600     | 0           | 225         | Pipe/Conduit | 8              |
| 1.002 | 66.149        | 0.397       | 166.6          | 0.146          | 0.00           |            | 0.0          | 0.600     | 0           | 300         | Pipe/Conduit | 0              |
| 1.003 | 6.232         | 0.037       | 168.4          | 0.016          | 0.00           |            | 0.0          | 0.600     | 0           | 300         | Pipe/Conduit | Ö              |
| 1.004 | 68.812        | 0.44/       | 153.8          | 0.165          | 0.00           |            | 0.0          | 0.600     | 0           | 300         | Pipe/Conduit |                |
| 1.005 | 9.465         | 0.063       | 150.7          | 0.009          | 0.00           |            | 0.0          | 0.600     | 0           | 300         | Pipe/Conduit | Ö              |
| 4.000 | 66.092        | 0.523       | 126.5          | 0.016          | 5.00           |            | 0.0          | 0.600     | 0           | 225         | Pipe/Conduit | 8              |
| 1.006 | 5.298         | 0.037       | 141.9          | 0.000          | 0.00           |            | 0.0          | 0.600     | 0           | 300         | Pipe/Conduit | 8              |

| PN                               | Rain<br>(mm/hr)                  | T.C.<br>(mins)               | US/IL<br>(m)                         | Σ I.Area<br>(ha)                 | Σ Base<br>Flow (l/s)     | Foul<br>(l/s)            | Add Flow<br>(l/s)        | Vel<br>(m/s)                 | Cap<br>(1/s)                 | Flow<br>(1/s)                |
|----------------------------------|----------------------------------|------------------------------|--------------------------------------|----------------------------------|--------------------------|--------------------------|--------------------------|------------------------------|------------------------------|------------------------------|
| 1.000                            | 34.85                            | 5.27                         | 53.290                               | 0.018                            | 0.0                      | 0.0                      | 0.0                      | 1.77                         | 70.6                         | 1.7                          |
| 2.000                            | 34.95                            | 5.22                         | 52.852                               | 0.044                            | 0.0                      | 0.0                      | 0.0                      | 1.01                         | 40.1                         | 4.2                          |
| 1.001                            | 34.03                            | 5.65                         | 52.773                               | 0.097                            | 0.0                      | 0.0                      | 0.0                      | 1.01                         | 40.1                         | 8.9                          |
| 3.000                            | 34.67                            | 5.35                         | 53.633                               | 0.086                            | 0.0                      | 0.0                      | 0.0                      | 1.83                         | 72.9                         | 8.1                          |
| 1.002<br>1.003<br>1.004<br>1.005 | 32.33<br>32.19<br>30.74<br>30.56 | 6.56<br>6.65<br>7.55<br>7.68 | 52.632<br>52.235<br>52.198<br>51.750 | 0.329<br>0.345<br>0.509<br>0.518 | 0.0<br>0.0<br>0.0<br>0.0 | 0.0<br>0.0<br>0.0<br>0.0 | 0.0<br>0.0<br>0.0<br>0.0 | 1.22<br>1.21<br>1.27<br>1.28 | 85.9<br>85.4<br>89.4<br>90.4 | 28.8<br>30.0<br>42.4<br>42.9 |
| 4.000                            | 33.44                            | 5.95                         | 52.210                               | 0.016                            | 0.0                      | 0.0                      | 0.0                      | 1.16                         | 46.2                         | 1.4                          |
| 1.006                            | 30.46                            | 7.74                         | 51.687                               | 0.534                            | 0.0                      | 0.0                      | 0.0                      | 1.32                         | 93.2                         | 44.1                         |

| Walsh Design Group                     |                         | Page 1   |  |  |  |
|----------------------------------------|-------------------------|----------|--|--|--|
| The Mall, Maryborough Woods            | Residential Development |          |  |  |  |
| Douglas                                | Coolcarron              |          |  |  |  |
| Co. Cork Ireland                       | Fermoy                  | Mirro    |  |  |  |
| Date 03/03/2022 09:11                  | Designed by IR          | Desinado |  |  |  |
| File Coolcarron_Model_4.1_DRAINAGE.mdx | Checked by MW           | Diamage  |  |  |  |
| XP Solutions                           | Network 2018.1.1        |          |  |  |  |

| Manhole | Schedules | for | Surface | Network | 4 |
|---------|-----------|-----|---------|---------|---|
|         |           |     |         |         |   |

| MH<br>Name | MH<br>CL (m) | MH<br>Depth<br>(m) | Conr | MH<br>nection | MH<br>Diam.,L*W<br>(mm) | PN    | Pipe Out<br>Invert<br>Level (m) | Diameter<br>(mm) | PN    | Pipes In<br>Invert<br>Level (m) | Diameter<br>(mm) | Backdrop<br>(mm) |
|------------|--------------|--------------------|------|---------------|-------------------------|-------|---------------------------------|------------------|-------|---------------------------------|------------------|------------------|
|            |              |                    |      |               |                         |       |                                 |                  |       |                                 |                  |                  |
| S51        | 54.600       | 1.310              | Open | Manhole       | 900 x 675               | 1.000 | 53.290                          | 225              |       |                                 |                  |                  |
| S52        | 54.162       | 1.310              | Open | Manhole       | 1200                    | 2.000 | 52.852                          | 225              |       |                                 |                  |                  |
| S53        | 54.146       | 1.374              | Open | Manhole       | 1200                    | 1.001 | 52.773                          | 225              | 1.000 | 52.773                          | 225              |                  |
|            |              |                    |      |               |                         |       |                                 |                  | 2.000 | 52.773                          | 225              |                  |
| S54        | 54.943       | 1.310              | Open | Manhole       | 1200                    | 3.000 | 53.633                          | 225              |       |                                 |                  |                  |
| S55        | 54.196       | 1.564              | Open | Manhole       | 1200                    | 1.002 | 52.632                          | 300              | 1.001 | 52.632                          | 225              |                  |
|            |              |                    |      |               |                         |       |                                 |                  | 3.000 | 52.886                          | 225              | 180              |
| S56        | 53.990       | 1.755              | Open | Manhole       | 1200                    | 1.003 | 52.235                          | 300              | 1.002 | 52.235                          | 300              |                  |
| S57        | 53.900       | 1.703              | Open | Manhole       | 1350                    | 1.004 | 52.198                          | 300              | 1.003 | 52.198                          | 300              |                  |
| S58        | 53.517       | 1.767              | Open | Manhole       | 1350                    | 1.005 | 51.750                          | 300              | 1.004 | 51.750                          | 300              |                  |
| S59        | 54.039       | 1.829              | Open | Manhole       | 1200                    | 4.000 | 52.210                          | 225              |       |                                 |                  |                  |
| S60        | 53.520       | 1.833              | Open | Manhole       | 1350                    | 1.006 | 51.687                          | 300              | 1.005 | 51.687                          | 300              |                  |
|            |              |                    |      |               |                         |       |                                 |                  | 4.000 | 51.687                          | 225              |                  |
| S61        | 53.400       | 1.750              | Open | Manhole       | 1350                    |       | OUTFALL                         |                  | 1.006 | 51.650                          | 300              |                  |

| Walsh Design Group                     |                         | Page 2   |
|----------------------------------------|-------------------------|----------|
| The Mall, Maryborough Woods            | Residential Development |          |
| Douglas                                | Coolcarron              |          |
| Co. Cork Ireland                       | Fermoy                  | Mirro    |
| Date 03/03/2022 09:11                  | Designed by IR          | Desinado |
| File Coolcarron_Model_4.1_DRAINAGE.mdx | Checked by MW           | Diamaye  |
| XP Solutions                           | Network 2018.1.1        | •        |

## PIPELINE SCHEDULES for Surface Network 4

## Upstream Manhole

| PN    | Hyd<br>Sect | Diam<br>(mm) | MH<br>Name | C.Level<br>(m) | I.Level<br>(m) | D.Depth<br>(m) | MH<br>Connection | MH DIAM., L*W<br>(mm) |
|-------|-------------|--------------|------------|----------------|----------------|----------------|------------------|-----------------------|
| 1.000 | 0           | 225          | S51        | 54.600         | 53.290         | 1.085          | Open Manhole     | 900 x 675             |
| 2.000 | 0           | 225          | S52        | 54.162         | 52.852         | 1.085          | Open Manhole     | 1200                  |
| 1.001 | 0           | 225          | S53        | 54.146         | 52.773         | 1.149          | Open Manhole     | 1200                  |
| 3.000 | 0           | 225          | S54        | 54.943         | 53.633         | 1.085          | Open Manhole     | 1200                  |
| 1.002 | 0           | 300          | S55        | 54.196         | 52.632         | 1.264          | Open Manhole     | 1200                  |
| 1.003 | 0           | 300          | S56        | 53.990         | 52.235         | 1.455          | Open Manhole     | 1200                  |
| 1.004 | 0           | 300          | S57        | 53.900         | 52.198         | 1.403          | Open Manhole     | 1350                  |
| 1.005 | 0           | 300          | S58        | 53.517         | 51.750         | 1.467          | Open Manhole     | 1350                  |
| 4.000 | 0           | 225          | S59        | 54.039         | 52.210         | 1.604          | Open Manhole     | 1200                  |
| 1.006 | 0           | 300          | S60        | 53.520         | 51.687         | 1.533          | Open Manhole     | 1350                  |

## Downstream Manhole

| PN    | Length<br>(m) | Slope<br>(1:X) | MH<br>Name | C.Level<br>(m) | I.Level<br>(m) | D.Depth<br>(m) | MH<br>Connection | MH DIAM., L*W<br>(mm) |
|-------|---------------|----------------|------------|----------------|----------------|----------------|------------------|-----------------------|
| 1.000 | 28.255        | 54.6           | S53        | 54.146         | 52.773         | 1.149          | Open Manhole     | 1200                  |
| 2.000 | 13.332        | 166.7          | S53        | 54.146         | 52.773         | 1.149          | Open Manhole     | 1200                  |
| 1.001 | 23.498        | 166.7          | S55        | 54.196         | 52.632         | 1.339          | Open Manhole     | 1200                  |
| 3.000 | 38.186        | 51.1           | S55        | 54.196         | 52.886         | 1.085          | Open Manhole     | 1200                  |
| 1.002 | 66.149        | 166.6          | S56        | 53.990         | 52.235         | 1.455          | Open Manhole     | 1200                  |
| 1.003 | 6.232         | 168.4          | S57        | 53.900         | 52.198         | 1.403          | Open Manhole     | 1350                  |
| 1.004 | 68.812        | 153.8          | S58        | 53.517         | 51.750         | 1.467          | Open Manhole     | 1350                  |
| 1.005 | 9.465         | 150.7          | S60        | 53.520         | 51.687         | 1.533          | Open Manhole     | 1350                  |
| 4.000 | 66.092        | 126.5          | S60        | 53.520         | 51.687         | 1.608          | Open Manhole     | 1350                  |
| 1.006 | 5.298         | 141.9          | S61        | 53.400         | 51.650         | 1.450          | Open Manhole     | 1350                  |

Free Flowing Outfall Details for Surface Network 4

| Out<br>Pipe | tfall<br>Number | Outfall<br>Name | c. | Level<br>(m) | Ι. | Level<br>(m) | Ι. | Min<br>Level<br>(m) | D,L<br>(mm) | W<br>(mm) |
|-------------|-----------------|-----------------|----|--------------|----|--------------|----|---------------------|-------------|-----------|
|             | 1.006           | S61             | !  | 53.400       |    | 51.650       |    | 0.000               | 1350        | 0         |

| Walsh Design Group                     |                         | Page 3   |
|----------------------------------------|-------------------------|----------|
| The Mall, Maryborough Woods            | Residential Development |          |
| Douglas                                | Coolcarron              |          |
| Co. Cork Ireland                       | Fermoy                  | Micro    |
| Date 03/03/2022 09:11                  | Designed by IR          | Desinado |
| File Coolcarron_Model_4.1_DRAINAGE.mdx | Checked by MW           | Diamaye  |
| XP Solutions                           | Network 2018.1.1        |          |

## Simulation Criteria for Surface Network 4

| Volumetric Runoff Coeff         | 0.750 | Additional Flow - % of Total Flow   | 0.000 |
|---------------------------------|-------|-------------------------------------|-------|
| Areal Reduction Factor          | 1.000 | MADD Factor * 10m³/ha Storage       | 2.000 |
| Hot Start (mins)                | 0     | Inlet Coeffiecient                  | 0.800 |
| Hot Start Level (mm)            | 0     | Flow per Person per Day (l/per/day) | 0.000 |
| Manhole Headloss Coeff (Global) | 0.500 | Run Time (mins)                     | 60    |
| Foul Sewage per hectare (l/s)   | 0.000 | Output Interval (mins)              | 1     |

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

## Synthetic Rainfall Details

| Rainfall Model        |             | FSR        | Profile           | Type Summer |
|-----------------------|-------------|------------|-------------------|-------------|
| Return Period (years) |             | 1          | Cv (Sum           | mer) 0.750  |
| Region                | Scotland ar | nd Ireland | Cv (Win           | ter) 0.840  |
| M5-60 (mm)            |             | 17.000     | Storm Duration (m | ins) 30     |
| Ratio R               |             | 0.200      |                   |             |

| Walsh Design Group                                                           |                                                                                                                                                                                                                                                                              | Page 4   |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| The Mall, Maryborough Woods                                                  | Residential Development                                                                                                                                                                                                                                                      |          |
| Douglas                                                                      | Coolcarron                                                                                                                                                                                                                                                                   |          |
| Co. Cork Ireland                                                             | Fermoy                                                                                                                                                                                                                                                                       | Mirro    |
| Date 03/03/2022 09:11                                                        | Designed by IR                                                                                                                                                                                                                                                               | Desinado |
| File Coolcarron_Model_4.1_DRAINAGE.mdx                                       | Checked by MW                                                                                                                                                                                                                                                                | Diamage  |
| XP Solutions                                                                 | Network 2018.1.1                                                                                                                                                                                                                                                             |          |
| <u>Online Cont</u><br><u>Hydro-Brake® Optimum Manh</u><br>Un<br>Des<br>Desig | rols for Surface Network 4<br>cole: S60, DS/PN: 1.006, Volume (m <sup>3</sup> ): 5.8<br>it Reference MD-SHE-0100-4100-0744-4100<br>ign Head (m) 0.744<br>n Flow (1/s) 4.1<br>Flush-Flo <sup>M</sup> Calculated<br>Objective Minimise upstream storage<br>Application Surface |          |
| Su                                                                           | mp Available Yes                                                                                                                                                                                                                                                             |          |
| D                                                                            | iameter (mm) 100                                                                                                                                                                                                                                                             |          |
| Inve                                                                         | rt Level (m) 51.687                                                                                                                                                                                                                                                          |          |
| Minimum Outlet Pipe D                                                        | iameter (mm) 150                                                                                                                                                                                                                                                             |          |
| Suggested Manhole D                                                          | lameter (mm) 1200                                                                                                                                                                                                                                                            |          |
| Control Points Head (m) Fl                                                   | Low (l/s) Control Points Head (m) Flow                                                                                                                                                                                                                                       | (l/s)    |
| Design Point (Calculated) 0.744                                              | 4.1 Kick-Flo® 0.496                                                                                                                                                                                                                                                          | 3.4      |
| Flush-Flo™ 0.222                                                             | 4.1 Mean Flow over Head Range -                                                                                                                                                                                                                                              | 3.5      |

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

| Depth (m) | Flow (1/s | ) Dep | th (m) | Flow (l/s) | Depth (m | ) Flow ( | 1/s) | Depth (m) | Flow (l/s) | Depth (m) | Flow (l/s) |
|-----------|-----------|-------|--------|------------|----------|----------|------|-----------|------------|-----------|------------|
|           |           |       |        |            |          |          |      |           |            |           |            |
| 0.100     | 3.        | 3     | 0.800  | 4.2        | 2.00     | 0        | 6.5  | 4.000     | 9.0        | 7.000     | 11.8       |
| 0.200     | 4.        | 1     | 1.000  | 4.7        | 2.20     | 0        | 6.8  | 4.500     | 9.5        | 7.500     | 12.1       |
| 0.300     | 4.        | 0     | 1.200  | 5.1        | 2.40     | 0        | 7.1  | 5.000     | 10.0       | 8.000     | 12.5       |
| 0.400     | 3.        | 9     | 1.400  | 5.5        | 2.60     | 0        | 7.3  | 5.500     | 10.5       | 8.500     | 12.9       |
| 0.500     | 3.        | 4     | 1.600  | 5.8        | 3.00     | 0        | 7.9  | 6.000     | 10.9       | 9.000     | 13.3       |
| 0.600     | 3.        | 7     | 1.800  | 6.2        | 3.50     | 0        | 8.5  | 6.500     | 11.3       | 9.500     | 13.6       |

| Walsh Design Group                     |                         |          |  |  |  |  |
|----------------------------------------|-------------------------|----------|--|--|--|--|
| The Mall, Maryborough Woods            | Residential Development |          |  |  |  |  |
| Douglas                                | Coolcarron              |          |  |  |  |  |
| Co. Cork Ireland                       | Fermoy                  | Mirro    |  |  |  |  |
| Date 03/03/2022 09:11                  | Designed by IR          | Dcainago |  |  |  |  |
| File Coolcarron_Model_4.1_DRAINAGE.mdx | Checked by MW           | Diamaye  |  |  |  |  |
| XP Solutions                           | Network 2018.1.1        |          |  |  |  |  |

## Storage Structures for Surface Network 4

Tank or Pond Manhole: S60, DS/PN: 1.006

Invert Level (m) 51.687

| Depth (n | n) i | Area (m² | ) Depth | (m)  | Area ( | m²) | Depth | (m) | Area | (m²) | Depth | (m) | Area | (m²) | Depth | (m) | Area | (m²) |
|----------|------|----------|---------|------|--------|-----|-------|-----|------|------|-------|-----|------|------|-------|-----|------|------|
| 0.00     | 00   | 270.     | 0 1     | .200 |        | 0.0 | 2.    | 400 |      | 0.0  | 3.    | 600 |      | 0.0  | 4.    | 800 |      | 0.0  |
| 0.20     | 00   | 270.     | 0 1     | .400 |        | 0.0 | 2.    | 600 |      | 0.0  | 3.    | 800 |      | 0.0  | 5.    | 000 |      | 0.0  |
| 0.40     | 00   | 270.     | 0 1     | .600 |        | 0.0 | 2.    | 800 |      | 0.0  | 4.    | 000 |      | 0.0  |       |     |      |      |
| 0.60     | 00   | 270.     | 0 1     | .800 |        | 0.0 | 3.    | 000 |      | 0.0  | 4.    | 200 |      | 0.0  |       |     |      |      |
| 0.80     | 00   | 270.     | 0 2     | .000 |        | 0.0 | 3.    | 200 |      | 0.0  | 4.    | 400 |      | 0.0  |       |     |      |      |
| 1.00     | 00   | 270.     | 0 2     | .200 |        | 0.0 | 3.    | 400 |      | 0.0  | 4.    | 600 |      | 0.0  |       |     |      |      |

| Walsh Design Group                     |                                          | Page 6   |
|----------------------------------------|------------------------------------------|----------|
| The Mall, Maryborough Woods            | Residential Development                  |          |
| Douglas                                | Coolcarron                               |          |
| Co. Cork Ireland                       | Fermoy                                   | Mirro    |
| Date 03/03/2022 09:11                  | Designed by IR                           | Drainago |
| File Coolcarron_Model_4.1_DRAINAGE.mdx | Checked by MW                            | Diamage  |
| XP Solutions                           | Network 2018.1.1                         |          |
| Summary of Critical Results by         | Maximum Level (Rank 1) for Surface Netwo | rk 4     |

#### Simulation Criteria

Areal Reduction Factor1.000Additional Flow - % of Total Flow 0.000<br/>MADD Factor \* 10m³/ha Storage 2.000<br/>Inlet Coefficient 0.800Manhole Headloss Coeff (Global)0.500 Flow per Person per Day (l/per/day)0.000<br/>0.000Foul Sewage per hectare (l/s)0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR M5-60 (mm) 17.000 Cv (Summer) 0.750 Region Scotland and Ireland Ratio R 0.200 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 5.0 DVD Status ON Analysis Timestep Fine Inertia Status OFF DTS Status ON

 Profile(s)
 Summer and Winter

 Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440

 Return Period(s) (years)
 1, 30, 100

 Climate Change (%)
 20, 20, 20

| PN    | US/MH<br>Name | Storm       | Return<br>Period | Climate<br>Change | First (<br>Surchar | (X) I<br>rge | First (Y)<br>Flood | First (Z)<br>Overflow | Overflow<br>Act. | Water<br>Level<br>(m) | Surcharged<br>Depth<br>(m) | Flooded<br>Volume<br>(m³) |
|-------|---------------|-------------|------------------|-------------------|--------------------|--------------|--------------------|-----------------------|------------------|-----------------------|----------------------------|---------------------------|
| 1.000 | S51           | 15 Winter   | 100              | +20%              | 100/15 Su          | ummer        |                    |                       |                  | 53.690                | 0.174                      | 0.000                     |
| 2.000 | S52           | 15 Winter   | 100              | +20%              | 30/15 Su           | ummer        |                    |                       |                  | 53.699                | 0.622                      | 0.000                     |
| 1.001 | S53           | 15 Winter   | 100              | +20%              | 30/15 Su           | ummer        |                    |                       |                  | 53.678                | 0.681                      | 0.000                     |
| 3.000 | S54           | 15 Winter   | 100              | +20%              |                    |              |                    |                       |                  | 53.739                | -0.119                     | 0.000                     |
| 1.002 | S55           | 15 Winter   | 100              | +20%              | 30/15 Su           | ummer        |                    |                       |                  | 53.600                | 0.668                      | 0.000                     |
| 1.003 | S56           | 1440 Winter | 100              | +20%              | 30/15 Su           | ummer        |                    |                       |                  | 53.236                | 0.701                      | 0.000                     |
| 1.004 | S57           | 1440 Winter | 100              | +20%              | 30/15 Su           | ummer        |                    |                       |                  | 53.234                | 0.736                      | 0.000                     |
| 1.005 | S58           | 1440 Winter | 100              | +20%              | 30/15 Su           | ummer        |                    |                       |                  | 53.224                | 1.174                      | 0.000                     |
| 4.000 | S59           | 1440 Winter | 100              | +20%              | 30/360 Wi          | nter         |                    |                       |                  | 53.221                | 0.786                      | 0.000                     |
| 1.006 | S60           | 1440 Winter | 100              | +20%              | 1/240 Wi           | nter         |                    |                       |                  | 53.221                | 1.233                      | 0.000                     |

|       |       |        |          | Pipe  |            |          |  |
|-------|-------|--------|----------|-------|------------|----------|--|
|       | US/MH | Flow / | Overflow | Flow  |            | Level    |  |
| PN    | Name  | Cap.   | (1/s)    | (l/s) | Status     | Exceeded |  |
|       |       |        |          |       |            |          |  |
| 1.000 | S51   | 0.09   |          | 5.7   | SURCHARGED |          |  |
| 2.000 | S52   | 0.36   |          | 12.4  | SURCHARGED |          |  |
| 1.001 | S53   | 0.78   |          | 28.6  | SURCHARGED |          |  |
| 3.000 | S54   | 0.44   |          | 30.5  | OK         |          |  |
| 1.002 | S55   | 0.97   |          | 79.7  | SURCHARGED |          |  |
| 1.003 | S56   | 0.18   |          | 11.0  | SURCHARGED |          |  |
| 1.004 | S57   | 0.19   |          | 16.2  | SURCHARGED |          |  |
| 1.005 | S58   | 0.26   |          | 16.0  | SURCHARGED |          |  |
| 4.000 | S59   | 0.01   |          | 0.5   | SURCHARGED |          |  |
| 1.006 | S60   | 0.09   |          | 5.7   | SURCHARGED |          |  |

| Walsh Design Group                     |                         | Page 0   |
|----------------------------------------|-------------------------|----------|
| The Mall, Maryborough Woods            | Residential Development |          |
| Douglas                                | Coolcarron              |          |
| Co. Cork Ireland                       | Fermoy                  | Mirro    |
| Date 03/03/2022 09:13                  | Designed by IR          |          |
| File Coolcarron_Model_4.1_DRAINAGE.mdx | Checked by MW           | Diamacje |
| XP Solutions                           | Network 2018.1.1        |          |

### STORM SEWER DESIGN by the Modified Rational Method

### Design Criteria for Surface Network 5

Pipe Sizes Storm Manhole Sizes IW-MH

| FSR Rainfall I                       | Model - | Scotland and Ireland                  |       |
|--------------------------------------|---------|---------------------------------------|-------|
| Return Period (years)                | 1       | PIMP (%)                              | 100   |
| M5-60 (mm)                           | 17.000  | Add Flow / Climate Change (%)         | 0     |
| Ratio R                              | 0.200   | Minimum Backdrop Height (m)           | 0.200 |
| Maximum Rainfall (mm/hr)             | 50      | Maximum Backdrop Height (m)           | 2.500 |
| Maximum Time of Concentration (mins) | 30      | Min Design Depth for Optimisation (m) | 1.200 |
| Foul Sewage (l/s/ha)                 | 0.000   | Min Vel for Auto Design only (m/s)    | 1.00  |
| Volumetric Runoff Coeff.             | 0.750   | Min Slope for Optimisation (1:X)      | 500   |
|                                      |         |                                       |       |

Designed with Level Inverts

Time Area Diagram for Surface Network 5

Time<br/>(mins)Area<br/>(ha)Time<br/>(mins)Area<br/>(mins)Time<br/>(mins)Area<br/>(mins)0-40.5924-81.1078-120.023Total<br/>AreaContributing<br/>(ha) = 1.7211.1011.101

#### Network Design Table for Surface Network 5

| PN    | Length | Fall  | Slope | I.Area | T.E.   | Ba   | ase   | k     | HYD  | DIA  | Section Type | Auto   |
|-------|--------|-------|-------|--------|--------|------|-------|-------|------|------|--------------|--------|
|       | (m)    | (m)   | (1:X) | (ha)   | (mins) | Flow | (l/s) | (mm)  | SECT | (mm) |              | Design |
| 1.000 | 31.445 | 1.457 | 21.6  | 0.051  | 5.00   |      | 0.0   | 0.600 | о    | 225  | Pipe/Conduit | A      |
| 1.001 | 47.845 | 1.911 | 25.0  | 0.049  | 0.00   |      | 0.0   | 0.600 | 0    | 225  | Pipe/Conduit | ē      |
| 1.002 | 45.352 | 0.422 | 107.5 | 0.049  | 0.00   |      | 0.0   | 0.600 | 0    | 375  | Pipe/Conduit | ā      |
| 1.003 | 7.981  | 0.033 | 241.8 | 0.010  | 0.00   |      | 0.0   | 0.600 | 0    | 375  | Pipe/Conduit | ā      |
| 1.004 | 88.663 | 0.369 | 240.3 | 0.302  | 0.00   |      | 0.0   | 0.600 | 0    | 375  | Pipe/Conduit | ē      |
| 2.000 | 19.878 | 0.119 | 167.0 | 0.020  | 5.00   |      | 0.0   | 0.600 | 0    | 300  | Pipe/Conduit | ۵      |
| 3.000 | 12.975 | 0.292 | 44.4  | 0.037  | 5.00   |      | 0.0   | 0.600 | 0    | 300  | Pipe/Conduit | ۵      |
| 2.001 | 67.290 | 0.404 | 166.7 | 0.181  | 0.00   |      | 0.0   | 0.600 | 0    | 300  | Pipe/Conduit | 8      |

| PN    | Rain    | T.C.   | US/IL  | Σ I.Area | $\Sigma$ Base | Foul  | Add Flow | Vel   | Cap   | Flow  |
|-------|---------|--------|--------|----------|---------------|-------|----------|-------|-------|-------|
|       | (mm/hr) | (mins) | (m)    | (ha)     | Flow (l/s)    | (l/s) | (1/s)    | (m/s) | (1/s) | (l/s) |
| 1.000 | 35.02   | 5.19   | 56.108 | 0.051    | 0.0           | 0.0   | 0.0      | 2.83  | 112.5 | 4.8   |
| 1.001 | 34.37   | 5.49   | 54.651 | 0.099    | 0.0           | 0.0   | 0.0      | 2.63  | 104.4 | 9.3   |
| 1.002 | 33.50   | 5.92   | 52.740 | 0.148    | 0.0           | 0.0   | 0.0      | 1.75  | 193.0 | 13.5  |
| 1.003 | 33.27   | 6.04   | 52.318 | 0.158    | 0.0           | 0.0   | 0.0      | 1.16  | 128.2 | 14.3  |
| 1.004 | 31.12   | 7.31   | 52.285 | 0.460    | 0.0           | 0.0   | 0.0      | 1.16  | 128.6 | 38.8  |
| 2.000 | 34.83   | 5.27   | 52.964 | 0.020    | 0.0           | 0.0   | 0.0      | 1.21  | 85.8  | 1.8   |
| 3.000 | 35.23   | 5.09   | 53.137 | 0.037    | 0.0           | 0.0   | 0.0      | 2.37  | 167.2 | 3.6   |
| 2.001 | 32.98   | 6.20   | 52.845 | 0.238    | 0.0           | 0.0   | 0.0      | 1.21  | 85.9  | 21.2  |

| Walsh Design Group                     | Page 1                  |          |
|----------------------------------------|-------------------------|----------|
| The Mall, Maryborough Woods            | Residential Development |          |
| Douglas                                | Coolcarron              |          |
| Co. Cork Ireland                       | Fermoy                  | Mirro    |
| Date 03/03/2022 09:13                  | Designed by IR          | Desinano |
| File Coolcarron_Model_4.1_DRAINAGE.mdx | Checked by MW           | Diamage  |
| XP Solutions                           | Network 2018.1.1        | •        |

# Network Design Table for Surface Network 5

| PN    | Length | Fall  | Slope          | I.Area | T.E.   | Base       | k     | HYD  | DIA        | Section Type      | Auto     |
|-------|--------|-------|----------------|--------|--------|------------|-------|------|------------|-------------------|----------|
|       | (m)    | (m)   | (1:X)          | (ha)   | (mins) | Flow (l/s) | (mm)  | SECT | (mm)       |                   | Design   |
| 4.000 | 16.341 | 0.103 | 158.7          | 0.026  | 5.00   | 0.0        | 0.600 | 0    | 300        | Pipe/Conduit      | ٥        |
| 2.002 | 69.888 | 0.526 | 132.9          | 0.143  | 0.00   | 0.0        | 0.600 | 0    | 375        | Pipe/Conduit      | 8        |
| 1.005 | 21.263 | 0.092 | 230.6          | 0.019  | 0.00   | 0.0        | 0.600 | 0    | 375        | Pipe/Conduit      | ۵        |
| 5.000 | 12.116 | 0.105 | 114.9          | 0.015  | 5.00   | 0.0        | 0.600 | 0    | 225        | Pipe/Conduit      | 8        |
| 1.006 | 65.602 | 0.262 | 250.0          | 0.139  | 0.00   | 0.0        | 0.600 | 0    | 375        | Pipe/Conduit      | ۵        |
| 6.000 | 56.675 | 0.340 | 166.7<br>166.7 | 0.207  | 5.00   | 0.0        | 0.600 | 0    | 300<br>300 | Pipe/Conduit      | <b>B</b> |
| 1.007 | 51.127 | 0.368 | 138.8          | 0.144  | 0.00   | 0.0        | 0.600 | 0    | 375        | Pipe/Conduit      |          |
| 7.000 | 52.157 | 0.313 | 166.7          | 0.034  | 5.00   | 0.0        | 0.600 | 0    | 225        | Pipe/Conduit      | Ă        |
| 7.001 | 86.312 | 0.518 | 166.7          | 0.173  | 0.00   | 0.0        | 0.600 | 0    | 225        | -<br>Pipe/Conduit | Ä        |
| 7.002 | 32.754 | 0.196 | 166.7          | 0.025  | 0.00   | 0.0        | 0.600 | 0    | 225        | Pipe/Conduit      | Ă        |
| 7.003 | 7.576  | 0.045 | 168.4          | 0.000  | 0.00   | 0.0        | 0.600 | 0    | 300        | Pipe/Conduit      | ŏ        |
| 1.008 | 8.589  | 0.025 | 350.0          | 0.000  | 0.00   | 0.0        | 0.600 | 0    | 450        | Pipe/Conduit      | A        |

| PN                               | Rain<br>(mm/hr)                  | T.C.<br>(mins)               | US/IL<br>(m)                         | Σ I.Area<br>(ha)                 | Σ Base<br>Flow (l/s)     | Foul<br>(l/s)            | Add Flow<br>(1/s)        | Vel<br>(m/s)                 | Cap<br>(1/s)                 | Flow<br>(l/s)               |
|----------------------------------|----------------------------------|------------------------------|--------------------------------------|----------------------------------|--------------------------|--------------------------|--------------------------|------------------------------|------------------------------|-----------------------------|
| 4.000                            | 34.95                            | 5.22                         | 52.545                               | 0.026                            | 0.0                      | 0.0                      | 0.0                      | 1.25                         | 88.1                         | 2.4                         |
| 2.002                            | 31.70                            | 6.94                         | 52.441                               | 0.406                            | 0.0                      | 0.0                      | 0.0                      | 1.57                         | 173.4                        | 34.9                        |
| 1.005                            | 30.67                            | 7.60                         | 51.915                               | 0.885                            | 0.0                      | 0.0                      | 0.0                      | 1.19                         | 131.3                        | 73.5                        |
| 5.000                            | 35.07                            | 5.17                         | 52.276                               | 0.015                            | 0.0                      | 0.0                      | 0.0                      | 1.22                         | 48.5                         | 1.4                         |
| 1.006                            | 29.33                            | 8.56                         | 51.823                               | 1.038                            | 0.0                      | 0.0                      | 0.0                      | 1.14                         | 126.1                        | 82.5                        |
| 6.000<br>6.001                   | 33.78<br>32.28                   | 5.78<br>6.59                 | 52.040<br>51.700                     | 0.207<br>0.305                   | 0.0                      | 0.0                      | 0.0                      | 1.21<br>1.21                 | 85.9<br>85.9                 | 18.9<br>26.7                |
| 1.007                            | 28.62                            | 9.12                         | 51.343                               | 1.488                            | 0.0                      | 0.0                      | 0.0                      | 1.54                         | 169.6                        | 115.4                       |
| 7.000<br>7.001<br>7.002<br>7.003 | 33.61<br>31.15<br>30.34<br>30.19 | 5.86<br>7.29<br>7.83<br>7.93 | 52.046<br>51.734<br>51.216<br>51.020 | 0.034<br>0.208<br>0.233<br>0.233 | 0.0<br>0.0<br>0.0<br>0.0 | 0.0<br>0.0<br>0.0<br>0.0 | 0.0<br>0.0<br>0.0<br>0.0 | 1.01<br>1.01<br>1.01<br>1.21 | 40.1<br>40.1<br>40.1<br>85.5 | 3.1<br>17.5<br>19.1<br>19.1 |
| 1.008                            | 28.46                            | 9.25                         | 50.974                               | 1.721                            | 0.0                      | 0.0                      | 0.0                      | 1.08                         | 171.9                        | 132.7                       |

| Walsh Design Group                     | Page 2                  |          |  |  |
|----------------------------------------|-------------------------|----------|--|--|
| The Mall, Maryborough Woods            | Residential Development |          |  |  |
| Douglas                                | Coolcarron              |          |  |  |
| Co. Cork Ireland                       | Fermoy                  | Mirro    |  |  |
| Date 03/03/2022 09:13                  | Designed by IR          | Desinado |  |  |
| File Coolcarron_Model_4.1_DRAINAGE.mdx | Checked by MW           | Diamaye  |  |  |
| XP Solutions                           | Network 2018.1.1        |          |  |  |

|--|

| MH<br>Name | MH<br>CL (m) | MH<br>Depth<br>(m) | MH<br>Connection | MH<br>Diam.,L*W<br>(mm) | PN    | Pipe Out<br>Invert<br>Level (m) | Diameter<br>(mm) | PN    | Pipes In<br>Invert<br>Level (m) | Diameter<br>(mm) | Backdrop<br>(mm) |
|------------|--------------|--------------------|------------------|-------------------------|-------|---------------------------------|------------------|-------|---------------------------------|------------------|------------------|
| S29        | 57.514       | 1.405              | Open Manhole     | 1200                    | 1.000 | 56.108                          | 225              |       |                                 |                  |                  |
| S30        | 56.056       | 1.405              | Open Manhole     | 1200                    | 1.001 | 54.651                          | 225              | 1.000 | 54.651                          | 225              |                  |
| S31        | 54.220       | 1.480              | Open Manhole     | 1200                    | 1.002 | 52.740                          | 375              | 1.001 | 52.740                          | 225              |                  |
| S32        | 53.798       | 1.480              | Open Manhole     | 1200                    | 1.003 | 52.318                          | 375              | 1.002 | 52.318                          | 375              |                  |
| S33        | 53.792       | 1.507              | Open Manhole     | 1200                    | 1.004 | 52.285                          | 375              | 1.003 | 52.285                          | 375              |                  |
| S34        | 54.369       | 1.405              | Open Manhole     | 1200                    | 2.000 | 52.964                          | 300              |       |                                 |                  |                  |
| S35        | 54.543       | 1.406              | Open Manhole     | 1200                    | 3.000 | 53.137                          | 300              |       |                                 |                  |                  |
| S36        | 54.427       | 1.582              | Open Manhole     | 1200                    | 2.001 | 52.845                          | 300              | 2.000 | 52.845                          | 300              |                  |
|            |              |                    |                  |                         |       |                                 |                  | 3.000 | 52.845                          | 300              |                  |
| S37        | 53.950       | 1.405              | Open Manhole     | 1200                    | 4.000 | 52.545                          | 300              |       |                                 |                  |                  |
| S38        | 53.943       | 1.502              | Open Manhole     | 1200                    | 2.002 | 52.441                          | 375              | 2.001 | 52.441                          | 300              |                  |
|            |              |                    |                  |                         |       |                                 |                  | 4.000 | 52.442                          | 300              |                  |
| S39        | 53.956       | 2.041              | Open Manhole     | 1200                    | 1.005 | 51.915                          | 375              | 1.004 | 51.916                          | 375              |                  |
|            |              |                    |                  |                         |       |                                 |                  | 2.002 | 51.915                          | 375              |                  |
| S40        | 53.682       | 1.405              | Open Manhole     | 1200                    | 5.000 | 52.276                          | 225              |       |                                 |                  |                  |
| S41        | 53.726       | 1.903              | Open Manhole     | 1200                    | 1.006 | 51.823                          | 375              | 1.005 | 51.823                          | 375              |                  |
|            |              |                    |                  |                         |       |                                 |                  | 5.000 | 52.171                          | 225              | 197              |
| S42        | 53.445       | 1.405              | Open Manhole     | 1200                    | 6.000 | 52.040                          | 300              |       |                                 |                  |                  |
| S43        | 53.320       | 1.620              | Open Manhole     | 1200                    | 6.001 | 51.700                          | 300              | 6.000 | 51.700                          | 300              |                  |
| S44        | 53.266       | 1.924              | Open Manhole     | 1350                    | 1.007 | 51.343                          | 375              | 1.006 | 51.561                          | 375              | 218              |
|            |              |                    |                  |                         |       |                                 |                  | 6.001 | 51.343                          | 300              |                  |
| S45        | 53.452       | 1.405              | Open Manhole     | 1200                    | 7.000 | 52.046                          | 225              |       |                                 |                  |                  |
| S46        | 53.293       | 1.560              | Open Manhole     | 1200                    | 7.001 | 51.734                          | 225              | 7.000 | 51.734                          | 225              |                  |
| S47        | 52.948       | 1.732              | Open Manhole     | 1200                    | 7.002 | 51.216                          | 225              | 7.001 | 51.216                          | 225              |                  |
| S48        | 52.792       | 1.772              | Open Manhole     | 1200                    | 7.003 | 51.020                          | 300              | 7.002 | 51.020                          | 225              |                  |
| S49        | 52.811       | 1.837              | Open Manhole     | 1240 x 900              | 1.008 | 50.974                          | 450              | 1.007 | 50.974                          | 375              |                  |
|            |              |                    |                  |                         |       |                                 |                  | 7.003 | 50.975                          | 300              |                  |
| S50        | 52.733       | 1.783              | Open Manhole     | 1240 x 900              |       | OUTFALL                         |                  | 1.008 | 50.950                          | 450              |                  |

| Walsh Design Group                     | Page 3                  |          |
|----------------------------------------|-------------------------|----------|
| The Mall, Maryborough Woods            | Residential Development |          |
| Douglas                                | Coolcarron              |          |
| Co. Cork Ireland                       | Fermoy                  | Mirro    |
| Date 03/03/2022 09:13                  | Designed by IR          | Dcainago |
| File Coolcarron_Model_4.1_DRAINAGE.mdx | Checked by MW           | Diamage  |
| XP Solutions                           | Network 2018.1.1        |          |

# PIPELINE SCHEDULES for Surface Network 5

## Upstream Manhole

| PN    | Hyd<br>Sect | Diam<br>(mm) | MH<br>Name | C.Level<br>(m) | I.Level<br>(m) | D.Depth<br>(m) | MH<br>Connection | MH DIAM., L*W<br>(mm) |
|-------|-------------|--------------|------------|----------------|----------------|----------------|------------------|-----------------------|
| 1.000 | 0           | 225          | S29        | 57.514         | 56.108         | 1.180          | Open Manhole     | 1200                  |
| 1.001 | 0           | 225          | S30        | 56.056         | 54.651         | 1.180          | Open Manhole     | 1200                  |
| 1.002 | 0           | 375          | S31        | 54.220         | 52.740         | 1.105          | Open Manhole     | 1200                  |
| 1.003 | 0           | 375          | S32        | 53.798         | 52.318         | 1.105          | Open Manhole     | 1200                  |
| 1.004 | 0           | 375          | S33        | 53.792         | 52.285         | 1.132          | Open Manhole     | 1200                  |
| 2.000 | 0           | 300          | S34        | 54.369         | 52.964         | 1.105          | Open Manhole     | 1200                  |
| 3.000 | 0           | 300          | S35        | 54.543         | 53.137         | 1.106          | Open Manhole     | 1200                  |
| 2.001 | 0           | 300          | S36        | 54.427         | 52.845         | 1.282          | Open Manhole     | 1200                  |
| 4.000 | 0           | 300          | S37        | 53.950         | 52.545         | 1.105          | Open Manhole     | 1200                  |
| 2.002 | 0           | 375          | S38        | 53.943         | 52.441         | 1.127          | Open Manhole     | 1200                  |
| 1.005 | 0           | 375          | S39        | 53.956         | 51.915         | 1.666          | Open Manhole     | 1200                  |
| 5.000 | 0           | 225          | S40        | 53.682         | 52.276         | 1.180          | Open Manhole     | 1200                  |
| 1.006 | 0           | 375          | S41        | 53.726         | 51.823         | 1.528          | Open Manhole     | 1200                  |
| 6 000 | 0           | 300          | 542        | 53 445         | 52 040         | 1 105          | Open Manhole     | 1200                  |
| 6.001 | 0           | 300          | S43        | 53.320         | 51.700         | 1.320          | Open Manhole     | 1200                  |
| 1.007 | 0           | 375          | S44        | 53.266         | 51.343         | 1.549          | Open Manhole     | 1350                  |

## Downstream Manhole

| PN    | Length           | Slope         | MH          | C.Level | I.Level          | D.Depth | MH           | MH DIAM., L*W |
|-------|------------------|---------------|-------------|---------|------------------|---------|--------------|---------------|
|       | (m)              | (1:X)         | Name        | (m)     | (m)              | (m)     | Connection   | (mm)          |
| 1 000 | 21 445           | 21 6          | <b>G</b> 20 |         |                  | 1 100   | Open Manhala | 1200          |
| 1 001 | 31.443<br>17 915 | 21.0          | 021         | 50.050  | 54.051<br>52 740 | 1 255   | Open Manhole | 1200          |
| 1 002 | 47.045           | 23.0<br>107 E | 037<br>037  | 54.220  | 52.740<br>E2 210 | 1 105   | Open Manhole | 1200          |
| 1.002 | 45.552           | 107.5         | 334         | 53.790  | 52.310           | 1.105   | Open Manhole | 1200          |
| 1.003 | 7.981            | 241.8         | 533         | 53.792  | 52.285           | 1.132   | Open Mannole | 1200          |
| 1.004 | 88.663           | 240.3         | S39         | 53.956  | 51.916           | 1.666   | Open Manhole | 1200          |
| 2.000 | 19.878           | 167.0         | S36         | 54.427  | 52.845           | 1.282   | Open Manhole | 1200          |
|       |                  |               |             |         |                  |         | -            |               |
| 3.000 | 12.975           | 44.4          | S36         | 54.427  | 52.845           | 1.282   | Open Manhole | 1200          |
|       |                  |               |             |         |                  |         |              |               |
| 2.001 | 67.290           | 166.7         | S38         | 53.943  | 52.441           | 1.202   | Open Manhole | 1200          |
| 1 000 | 16 2/1           | 1 5 7         | 020         | E2 042  | ED 440           | 1 201   | Open Manhala | 1200          |
| 4.000 | 10.341           | 130./         | 220         | 55.945  | 52.442           | 1.201   | open Mannore | 1200          |
| 2.002 | 69.888           | 132.9         | S39         | 53.956  | 51.915           | 1.666   | Open Manhole | 1200          |
|       |                  |               |             |         |                  |         | -            |               |
| 1.005 | 21.263           | 230.6         | S41         | 53.726  | 51.823           | 1.528   | Open Manhole | 1200          |
|       |                  |               |             |         |                  |         |              |               |
| 5.000 | 12.116           | 114.9         | S41         | 53.726  | 52.171           | 1.330   | Open Manhole | 1200          |
| 1 006 | 65 602           | 250 0         | C11         | 52 266  | 51 561           | 1 221   | Open Manhele | 1250          |
| 1.000 | 05.002           | 230.0         | FLG         | 55.200  | 51.501           | 1.551   | open Mannore | 1550          |
| 6.000 | 56.675           | 166.7         | S43         | 53.320  | 51.700           | 1.320   | Open Manhole | 1200          |
| 6.001 | 59.576           | 166.7         | S44         | 53.266  | 51.343           | 1.624   | Open Manhole | 1350          |
|       |                  |               |             |         |                  |         |              |               |
| 1.007 | 51.127           | 138.8         | S49         | 52.811  | 50.974           | 1.462   | Open Manhole | 1240 x 900    |

| Walsh Design Group                     |                         |          |  |  |  |  |  |
|----------------------------------------|-------------------------|----------|--|--|--|--|--|
| The Mall, Maryborough Woods            | Residential Development |          |  |  |  |  |  |
| Douglas                                | Coolcarron              |          |  |  |  |  |  |
| Co. Cork Ireland                       | Fermoy                  | Mirro    |  |  |  |  |  |
| Date 03/03/2022 09:13                  | Designed by IR          | Dcainago |  |  |  |  |  |
| File Coolcarron_Model_4.1_DRAINAGE.mdx | Checked by MW           | Diamaye  |  |  |  |  |  |
| XP Solutions                           | Network 2018.1.1        |          |  |  |  |  |  |

### PIPELINE SCHEDULES for Surface Network 5

#### Upstream Manhole

| PN    | Hyd  | Diam | MH   | C.Level | I.Level | D.Depth | MH           | MH DIAM., L*W |
|-------|------|------|------|---------|---------|---------|--------------|---------------|
|       | Sect | (mm) | Name | (m)     | (m)     | (m)     | Connection   | (mm)          |
|       |      |      |      |         |         |         |              |               |
| 7.000 | 0    | 225  | S45  | 53.452  | 52.046  | 1.180   | Open Manhole | 1200          |
| 7.001 | 0    | 225  | S46  | 53.293  | 51.734  | 1.335   | Open Manhole | 1200          |
| 7.002 | 0    | 225  | S47  | 52.948  | 51.216  | 1.507   | Open Manhole | 1200          |
| 7.003 | 0    | 300  | S48  | 52.792  | 51.020  | 1.472   | Open Manhole | 1200          |
|       |      |      |      |         |         |         |              |               |
| 1.008 | 0    | 450  | S49  | 52.811  | 50.974  | 1.387   | Open Manhole | 1240 x 900    |

#### Downstream Manhole

| PN    | Length | Slope | MH   | C.Level | I.Level | D.Depth | MH           | MH DIAM., L*W |
|-------|--------|-------|------|---------|---------|---------|--------------|---------------|
|       | (m)    | (1:X) | Name | (m)     | (m)     | (m)     | Connection   | (mm)          |
|       |        |       |      |         |         |         |              |               |
|       |        |       |      |         |         |         |              |               |
| 7.000 | 52.157 | 166.7 | S46  | 53.293  | 51.734  | 1.335   | Open Manhole | 1200          |
| 7.001 | 86.312 | 166.7 | S47  | 52.948  | 51.216  | 1.507   | Open Manhole | 1200          |
| 7.002 | 32.754 | 166.7 | S48  | 52.792  | 51.020  | 1.547   | Open Manhole | 1200          |
| 7.003 | 7.576  | 168.4 | S49  | 52.811  | 50.975  | 1.537   | Open Manhole | 1240 x 900    |
|       |        |       |      |         |         |         |              |               |
| 1.008 | 8.589  | 350.0 | S50  | 52.733  | 50.950  | 1.333   | Open Manhole | 1240 x 900    |

### Free Flowing Outfall Details for Surface Network 5

Outfall Outfall C. Level I. Level Min D,L W Pipe Number Name (m) (m) I. Level (mm) (mm) (m)

1.008 S50 52.733 50.950 50.950 1240 900

### Simulation Criteria for Surface Network 5

| Volumetric Runoff Coeff         | 0.750 | Additional Flow - % of Total Flow   | 0.000 |
|---------------------------------|-------|-------------------------------------|-------|
| Areal Reduction Factor          | 1.000 | MADD Factor * 10m³/ha Storage       | 2.000 |
| Hot Start (mins)                | 0     | Inlet Coeffiecient                  | 0.800 |
| Hot Start Level (mm)            | 0     | Flow per Person per Day (1/per/day) | 0.000 |
| Manhole Headloss Coeff (Global) | 0.500 | Run Time (mins)                     | 60    |
| Foul Sewage per hectare (l/s)   | 0.000 | Output Interval (mins)              | 1     |

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

### Synthetic Rainfall Details

| Rainfall Model        |          |     | FSR     |       | Prof    | ile Type  | Summer |
|-----------------------|----------|-----|---------|-------|---------|-----------|--------|
| Return Period (years) |          |     | 1       |       | Cv      | (Summer)  | 0.750  |
| Region                | Scotland | and | Ireland |       | Cv      | (Winter)  | 0.840  |
| M5-60 (mm)            |          |     | 17.000  | Storm | Duratio | on (mins) | 30     |
| Ratio R               |          |     | 0.200   |       |         |           |        |

| Walsh Design Group                                                           |                                                                                                                                                                                                                                               | Page 5         |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| The Mall, Maryborough Woods                                                  | Residential Development                                                                                                                                                                                                                       |                |
| Douglas                                                                      | Coolcarron                                                                                                                                                                                                                                    |                |
| Co. Cork Ireland                                                             | Fermoy                                                                                                                                                                                                                                        | Micro          |
| Date 03/03/2022 09:13                                                        | Designed by IR                                                                                                                                                                                                                                | Desinado       |
| File Coolcarron_Model_4.1_DRAINAGE.mdx                                       | Checked by MW                                                                                                                                                                                                                                 | Diamade        |
| XP Solutions                                                                 | Network 2018.1.1                                                                                                                                                                                                                              |                |
| <u>Online Cont</u><br><u>Hydro-Brake® Optimum Manh</u><br>Un<br>Des<br>Desig | rols for Surface Network 5<br>ole: S49, DS/PN: 1.008, Volume (m³<br>it Reference MD-SHE-0158-1140-0744-1140<br>ign Head (m) 0.744<br>n Flow (1/s) 11.4<br>Flush-Flo™ Calculated<br>Objective Minimise upstream storage<br>Application Surface | <u>): 8.0</u>  |
| Su                                                                           | mp Available Yes                                                                                                                                                                                                                              |                |
| D                                                                            | iameter (mm) 158                                                                                                                                                                                                                              |                |
| Inve                                                                         | rt Level (m) 50.974                                                                                                                                                                                                                           |                |
| Minimum Outlet Pipe D                                                        | iameter (mm) 225                                                                                                                                                                                                                              |                |
| Suggested Manhole D                                                          | lameter (mm) 1200                                                                                                                                                                                                                             |                |
| Control Points Head (m) Fl                                                   | .ow (l/s) Control Points Head                                                                                                                                                                                                                 | (m) Flow (1/s) |
| Design Point (Calculated) 0.744                                              | 11.4 Kick-Flo® 0.                                                                                                                                                                                                                             | .545 9.8       |
| Flush-Flo™ 0.261                                                             | 11.4 Mean Flow over Head Range                                                                                                                                                                                                                | - 9.5          |

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

| Depth (m) | Flow | (l/s) | Depth | (m)  | Flow | (1/s) | Depth | (m)  | Flow | (l/s) | Depth | (m) | Flow | (1/s) | Depth | (m) | Flow | (1/s) |
|-----------|------|-------|-------|------|------|-------|-------|------|------|-------|-------|-----|------|-------|-------|-----|------|-------|
|           |      |       |       |      |      |       |       |      |      |       |       |     |      |       |       |     |      |       |
| 0.100     |      | 5.7   | 0.    | .800 |      | 11.8  | 2     | .000 |      | 18.2  | 4.    | 000 |      | 25.4  | 7.    | 000 |      | 33.3  |
| 0.200     |      | 11.3  | 1.    | .000 |      | 13.1  | 2     | .200 |      | 19.1  | 4.    | 500 |      | 26.9  | 7.    | 500 |      | 34.2  |
| 0.300     |      | 11.4  | 1.    | .200 |      | 14.3  | 2     | .400 |      | 19.9  | 5.    | 000 |      | 28.3  | 8.    | 000 |      | 35.4  |
| 0.400     |      | 11.1  | 1.    | .400 |      | 15.4  | 2     | .600 |      | 20.7  | 5.    | 500 |      | 29.6  | 8.    | 500 |      | 36.4  |
| 0.500     |      | 10.5  | 1.    | .600 |      | 16.4  | 3     | .000 |      | 22.1  | 6.    | 000 |      | 30.9  | 9.    | 000 |      | 37.5  |
| 0.600     |      | 10.3  | 1.    | .800 |      | 17.3  | 3     | .500 |      | 23.8  | 6.    | 500 |      | 32.1  | 9.    | 500 |      | 38.6  |

| Walsh Design Group                     |                         |          |  |  |  |  |
|----------------------------------------|-------------------------|----------|--|--|--|--|
| The Mall, Maryborough Woods            | Residential Development |          |  |  |  |  |
| Douglas                                | Coolcarron              |          |  |  |  |  |
| Co. Cork Ireland                       | Fermoy                  | Mirro    |  |  |  |  |
| Date 03/03/2022 09:13                  | Designed by IR          | Dcainago |  |  |  |  |
| File Coolcarron_Model_4.1_DRAINAGE.mdx | Checked by MW           | Diamaye  |  |  |  |  |
| XP Solutions                           | Network 2018.1.1        |          |  |  |  |  |

## Storage Structures for Surface Network 5

Tank or Pond Manhole: S49, DS/PN: 1.008

Invert Level (m) 50.975

| Depth | (m) | Area | (m²)  | Depth | (m)  | Area | (m²) | Depth | (m)  | Area | (m²) | Depth | (m) | Area | (m²) | Depth | (m) | Area | (m²) |
|-------|-----|------|-------|-------|------|------|------|-------|------|------|------|-------|-----|------|------|-------|-----|------|------|
| 0.    | 000 | 7    | 700.0 | 1     | .200 | 7    | 00.0 | 2     | .400 |      | 0.0  | 3.    | 600 |      | 0.0  | 4.    | 800 |      | 0.0  |
| 0.    | 200 | 7    | 700.0 | 1     | .400 | 7    | 00.0 | 2     | .600 |      | 0.0  | 3.    | 800 |      | 0.0  | 5.    | 000 |      | 0.0  |
| Ο.    | 400 | 7    | 700.0 | 1     | .600 |      | 0.0  | 2     | .800 |      | 0.0  | 4.    | 000 |      | 0.0  |       |     |      |      |
| 0.    | 600 | 7    | 700.0 | 1     | .800 |      | 0.0  | 3     | .000 |      | 0.0  | 4.    | 200 |      | 0.0  |       |     |      |      |
| 0.    | 800 | 7    | 700.0 | 2     | .000 |      | 0.0  | 3     | .200 |      | 0.0  | 4.    | 400 |      | 0.0  |       |     |      |      |
| 1.    | 000 | 7    | 700.0 | 2     | .200 |      | 0.0  | 3     | .400 |      | 0.0  | 4.    | 600 |      | 0.0  |       |     |      |      |
|       |     |      |       |       |      |      |      |       |      |      |      | i i   |     |      |      |       |     |      |      |

| Nalsh Design Group                     |                         |          |  |  |  |  |
|----------------------------------------|-------------------------|----------|--|--|--|--|
| The Mall, Maryborough Woods            | Residential Development |          |  |  |  |  |
| Douglas                                | Coolcarron              |          |  |  |  |  |
| Co. Cork Ireland                       | Fermoy                  | Mirro    |  |  |  |  |
| Date 03/03/2022 09:13                  | Designed by IR          | Drainago |  |  |  |  |
| File Coolcarron_Model_4.1_DRAINAGE.mdx | Checked by MW           | Diamage  |  |  |  |  |
| XP Solutions                           | Network 2018.1.1        |          |  |  |  |  |
|                                        |                         |          |  |  |  |  |

### Summary of Critical Results by Maximum Level (Rank 1) for Surface Network 5

#### Simulation Criteria

Areal Reduction Factor1.000Additional Flow - % of Total Flow 0.000<br/>MADD Factor \* 10m³/ha Storage 2.000<br/>Hot Start Level (mm)0MADD Factor \* 10m³/ha Storage 2.000<br/>Inlet Coefficient 0.800Manhole Headloss Coeff (Global)0.500 Flow per Person per Day (l/per/day)0.000Foul Sewage per hectare (l/s)0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR M5-60 (mm) 17.000 Cv (Summer) 0.750 Region Scotland and Ireland Ratio R 0.200 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 5.0 DVD Status ON Analysis Timestep Fine Inertia Status OFF DTS Status ON

 Profile(s)
 Summer and Winter

 Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440

 Return Period(s) (years)
 1, 30, 100

 Climate Change (%)
 20, 20, 20

|       | US/MH |             | Return | Climate | First  | c (X)  | First (Y) | First (Z) | Overflow | Water<br>Level | Surcharged<br>Depth | Flooded<br>Volume |
|-------|-------|-------------|--------|---------|--------|--------|-----------|-----------|----------|----------------|---------------------|-------------------|
| PN    | Name  | Storm       | Period | Change  | Surch  | harge  | Flood     | Overflow  | Act.     | (m)            | (m)                 | (m³)              |
| 1.000 | S29   | 15 Winter   | 100    | +20%    |        |        |           |           |          | 56.171         | -0.162              | 0.000             |
| 1.001 | S30   | 15 Winter   | 100    | +20%    |        |        |           |           |          | 54.746         | -0.130              | 0.000             |
| 1.002 | S31   | 30 Winter   | 100    | +20%    | 100/15 | Summer |           |           |          | 53.865         | 0.750               | 0.000             |
| 1.003 | S32   | 30 Winter   | 100    | +20%    | 30/15  | Summer |           |           |          | 53.783         | 1.091               | 0.000             |
| 1.004 | S33   | 30 Winter   | 100    | +20%    | 30/15  | Summer |           |           |          | 53.753         | 1.093               | 0.000             |
| 2.000 | S34   | 30 Winter   | 100    | +20%    | 100/15 | Summer |           |           |          | 53.802         | 0.538               | 0.000             |
| 3.000 | S35   | 30 Winter   | 100    | +20%    | 100/15 | Winter |           |           |          | 53.805         | 0.368               | 0.000             |
| 2.001 | S36   | 30 Winter   | 100    | +20%    | 100/15 | Summer |           |           |          | 53.799         | 0.654               | 0.000             |
| 4.000 | S37   | 30 Winter   | 100    | +20%    | 30/15  | Winter |           |           |          | 53.687         | 0.842               | 0.000             |
| 2.002 | S38   | 30 Winter   | 100    | +20%    | 30/15  | Winter |           |           |          | 53.682         | 0.866               | 0.000             |
| 1.005 | S39   | 30 Winter   | 100    | +20%    | 30/15  | Summer |           |           |          | 53.545         | 1.255               | 0.000             |
| 5.000 | S40   | 30 Winter   | 100    | +20%    | 30/15  | Summer |           |           |          | 53.334         | 0.833               | 0.000             |
| 1.006 | S41   | 30 Winter   | 100    | +20%    | 30/15  | Summer |           |           |          | 53.331         | 1.133               | 0.000             |
| 6.000 | S42   | 30 Winter   | 100    | +20%    | 30/15  | Winter |           |           |          | 52.977         | 0.637               | 0.000             |
| 6.001 | S43   | 30 Winter   | 100    | +20%    | 30/15  | Summer |           |           |          | 52.853         | 0.853               | 0.000             |
| 1.007 | S44   | 30 Winter   | 100    | +20%    | 30/15  | Summer |           |           |          | 52.601         | 0.883               | 0.000             |
| 7.000 | S45   | 15 Winter   | 100    | +20%    | 100/15 | Summer |           |           |          | 52.751         | 0.480               | 0.000             |
| 7.001 | S46   | 15 Winter   | 100    | +20%    | 30/15  | Summer |           |           |          | 52.723         | 0.765               | 0.000             |
| 7.002 | S47   | 1440 Winter | 100    | +20%    | 1/480  | Winter |           |           |          | 52.535         | 1.094               | 0.000             |
| 7.003 | S48   | 1440 Winter | 100    | +20%    | 1/180  | Winter |           |           |          | 52.529         | 1.210               | 0.000             |
| 1.008 | S49   | 1440 Winter | 100    | +20%    | 1/360  | Winter |           |           |          | 52.528         | 1.104               | 0.000             |

|       | US/MH | Flow / | Overflow | Pipe<br>Flow |            | Level    |  |
|-------|-------|--------|----------|--------------|------------|----------|--|
| PN    | Name  | Cap.   | (l/s)    | (l/s)        | Status     | Exceeded |  |
| 1.000 | S29   | 0.17   |          | 18.2         | OK         |          |  |
| 1.001 | S30   | 0.37   |          | 36.6         | OK         |          |  |
| 1.002 | S31   | 0.24   |          | 42.2         | SURCHARGED |          |  |
| 1.003 | S32   | 0.38   |          | 33.8         | SURCHARGED |          |  |
| 1.004 | S33   | 0.76   |          | 93.7         | SURCHARGED |          |  |
| 2.000 | S34   | 0.08   |          | 5.9          | SURCHARGED |          |  |
| 3.000 | S35   | 0.09   |          | 11.5         | SURCHARGED |          |  |
| 2.001 | S36   | 0.83   |          | 67.9         | SURCHARGED |          |  |
|       |       |        |          |              |            |          |  |

| Walsh Design Group                     |                         |          |  |  |  |  |
|----------------------------------------|-------------------------|----------|--|--|--|--|
| The Mall, Maryborough Woods            | Residential Development |          |  |  |  |  |
| Douglas                                | Coolcarron              |          |  |  |  |  |
| Co. Cork Ireland                       | Fermoy                  | Micro    |  |  |  |  |
| Date 03/03/2022 09:13                  | Designed by IR          | Desinado |  |  |  |  |
| File Coolcarron_Model_4.1_DRAINAGE.mdx | Checked by MW           | Diamaye  |  |  |  |  |
| XP Solutions                           | Network 2018.1.1        |          |  |  |  |  |

# Summary of Critical Results by Maximum Level (Rank 1) for Surface Network 5

|       |         |        |          | Pipe  |                                         |          |
|-------|---------|--------|----------|-------|-----------------------------------------|----------|
|       | US/MH   | Flow / | Overflow | Flow  |                                         | Level    |
| PN    | Name    | Cap.   | (1/s)    | (l/s) | Status                                  | Exceeded |
|       | ~ ~ ~ ~ |        |          |       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |          |
| 4.000 | \$37    | 0.09   |          | 7.1   | SURCHARGED                              |          |
| 2.002 | S38     | 0.58   |          | 95.2  | SURCHARGED                              |          |
| 1.005 | S39     | 1.53   |          | 169.6 | SURCHARGED                              |          |
| 5.000 | S40     | 0.13   |          | 5.3   | SURCHARGED                              |          |
| 1.006 | S41     | 1.66   |          | 196.5 | SURCHARGED                              |          |
| 6.000 | S42     | 0.66   |          | 53.6  | SURCHARGED                              |          |
| 6.001 | S43     | 0.86   |          | 69.9  | SURCHARGED                              |          |
| 1.007 | S44     | 1.84   |          | 290.0 | SURCHARGED                              |          |
| 7.000 | S45     | 0.30   |          | 11.6  | SURCHARGED                              |          |
| 7.001 | S46     | 1.37   |          | 53.5  | SURCHARGED                              |          |
| 7.002 | S47     | 0.18   |          | 6.9   | SURCHARGED                              |          |
| 7.003 | S48     | 0.11   |          | 6.8   | SURCHARGED                              |          |
| 1.008 | S49     | 0.15   |          | 16.0  | SURCHARGED                              |          |

| Walsh Design Group                     |                         |          |  |  |  |  |  |
|----------------------------------------|-------------------------|----------|--|--|--|--|--|
| The Mall, Maryborough Woods            | Residential Development |          |  |  |  |  |  |
| Douglas                                | Coolcarron              |          |  |  |  |  |  |
| Co. Cork Ireland                       | Fermoy                  | Mirro    |  |  |  |  |  |
| Date 03/03/2022 09:14                  | Designed by IR          |          |  |  |  |  |  |
| File Coolcarron_Model_4.1_DRAINAGE.mdx | Checked by MW           | Diamacje |  |  |  |  |  |
| XP Solutions                           | Network 2018.1.1        |          |  |  |  |  |  |

### STORM SEWER DESIGN by the Modified Rational Method

### Design Criteria for Surface Network 6

Pipe Sizes Storm Manhole Sizes IW-MH

| FSR Rainfall I                       | Model - | Scotland and Ireland                  |       |
|--------------------------------------|---------|---------------------------------------|-------|
| Return Period (years)                | 1       | PIMP (%)                              | 100   |
| M5-60 (mm)                           | 17.000  | Add Flow / Climate Change (%)         | 0     |
| Ratio R                              | 0.200   | Minimum Backdrop Height (m)           | 0.200 |
| Maximum Rainfall (mm/hr)             | 50      | Maximum Backdrop Height (m)           | 2.500 |
| Maximum Time of Concentration (mins) | 30      | Min Design Depth for Optimisation (m) | 1.200 |
| Foul Sewage (l/s/ha)                 | 0.000   | Min Vel for Auto Design only (m/s)    | 1.00  |
| Volumetric Runoff Coeff.             | 0.750   | Min Slope for Optimisation (1:X)      | 500   |
|                                      |         |                                       |       |

Designed with Level Inverts

Time Area Diagram for Surface Network 6

Time<br/>(mins)Area<br/>(ha)Time<br/>(mins)Area<br/>(mins)Time<br/>(mins)Area<br/>(mins)0-40.5224-80.5858-120.014Total<br/>Area<br/>Contributing(ha) = 1.1221.122Total<br/>PipeVolume<br/>(m³) = 34.981

Network Design Table for Surface Network 6

| PN    | Length | Fall  | Slope | I.Area | T.E.   | Ba   | ase   | k     | HYD  | DIA  | Section Type | Auto     |
|-------|--------|-------|-------|--------|--------|------|-------|-------|------|------|--------------|----------|
|       | (m)    | (m)   | (1:X) | (ha)   | (mins) | Flow | (l/s) | (mm)  | SECT | (mm) |              | Design   |
| 1.000 | 43.387 | 0.260 | 166.7 | 0.162  | 5.00   |      | 0.0   | 0.600 | 0    | 225  | Pipe/Conduit | 8        |
| 1.001 | 10.444 | 0.063 | 166.7 | 0.008  | 0.00   |      | 0.0   | 0.600 | 0    | 225  | Pipe/Conduit | ē        |
| 1.002 | 57.998 | 0.348 | 166.7 | 0.092  | 0.00   |      | 0.0   | 0.600 | 0    | 300  | Pipe/Conduit | ā        |
| 1.003 | 48.764 | 0.292 | 166.7 | 0.134  | 0.00   |      | 0.0   | 0.600 | 0    | 300  | Pipe/Conduit | ē        |
| 1.004 | 65.148 | 0.392 | 166.2 | 0.019  | 0.00   |      | 0.0   | 0.600 | 0    | 300  | Pipe/Conduit | ē        |
| 2.000 | 20.287 | 0.122 | 166.7 | 0.038  | 5.00   |      | 0.0   | 0.600 | 0    | 225  | Pipe/Conduit | <b>A</b> |
| 2.001 | 67.026 | 0.402 | 166.7 | 0.126  | 0.00   |      | 0.0   | 0.600 | 0    | 225  | Pipe/Conduit | ā        |
| 2.002 | 60.280 | 0.362 | 166.5 | 0.118  | 0.00   |      | 0.0   | 0.600 | 0    | 300  | Pipe/Conduit | ā        |
| 3.000 | 58.466 | 0.376 | 155.5 | 0.138  | 5.00   |      | 0.0   | 0.600 | 0    | 300  | Pipe/Conduit | •        |

| PN    | Rain    | T.C.   | US/IL  | Σ I.Area | $\Sigma$ Base | Foul  | Add Flow | Vel   | Cap   | Flow  |
|-------|---------|--------|--------|----------|---------------|-------|----------|-------|-------|-------|
|       | (mm/hr) | (mins) | (m)    | (ha)     | Flow (l/s)    | (l/s) | (1/s)    | (m/s) | (l/s) | (l/s) |
| 1.000 | 33.90   | 5.72   | 52.356 | 0.162    | 0.0           | 0.0   | 0.0      | 1.01  | 40.1  | 14.8  |
| 1.001 | 33.56   | 5.89   | 52.096 | 0.169    | 0.0           | 0.0   | 0.0      | 1.01  | 40.1  | 15.4  |
| 1.002 | 32.12   | 6.68   | 52.033 | 0.261    | 0.0           | 0.0   | 0.0      | 1.22  | 85.9  | 22.7  |
| 1.003 | 31.04   | 7.35   | 51.685 | 0.395    | 0.0           | 0.0   | 0.0      | 1.21  | 85.9  | 33.2  |
| 1.004 | 29.75   | 8.25   | 51.393 | 0.414    | 0.0           | 0.0   | 0.0      | 1.22  | 86.0  | 33.3  |
|       |         |        |        |          |               |       |          |       |       |       |
| 2.000 | 34.70   | 5.33   | 51.936 | 0.038    | 0.0           | 0.0   | 0.0      | 1.01  | 40.1  | 3.6   |
| 2.001 | 32.54   | б.44   | 51.814 | 0.164    | 0.0           | 0.0   | 0.0      | 1.01  | 40.1  | 14.5  |
| 2.002 | 31.18   | 7.27   | 51.412 | 0.282    | 0.0           | 0.0   | 0.0      | 1.22  | 85.9  | 23.8  |
| 3.000 | 33.79   | 5.77   | 51.950 | 0.138    | 0.0           | 0.0   | 0.0      | 1.26  | 88.9  | 12.6  |

| Walsh Design Group                     | Walsh Design Group      |          |  |  |  |  |  |  |
|----------------------------------------|-------------------------|----------|--|--|--|--|--|--|
| The Mall, Maryborough Woods            | Residential Development |          |  |  |  |  |  |  |
| Douglas                                | Coolcarron              |          |  |  |  |  |  |  |
| Co. Cork Ireland                       | Fermoy                  | Mirro    |  |  |  |  |  |  |
| Date 03/03/2022 09:14                  | Designed by IR          | Drainago |  |  |  |  |  |  |
| File Coolcarron_Model_4.1_DRAINAGE.mdx | Checked by MW           | Diamage  |  |  |  |  |  |  |
| XP Solutions                           | Network 2018.1.1        |          |  |  |  |  |  |  |

# Network Design Table for Surface Network 6

| PN             | Length<br>(m)   | Fall<br>(m)    | Slope<br>(1:X) | I.Area<br>(ha) | T.E.<br>(mins) | Ba<br>Flow | ase<br>(l/s) | k<br>(mm)      | HYD<br>SECT | DIA<br>(mm) | Section Type                 | Auto<br>Design |
|----------------|-----------------|----------------|----------------|----------------|----------------|------------|--------------|----------------|-------------|-------------|------------------------------|----------------|
| 4.000<br>4.001 | 27.592<br>5.557 | 0.165<br>0.034 | 166.7<br>162.9 | 0.065<br>0.000 | 5.00<br>0.00   |            | 0.0          | 0.600<br>0.600 | 0<br>0      | 225<br>225  | Pipe/Conduit<br>Pipe/Conduit | <b>.</b>       |
| 3.001          | 73.898          | 0.524          | 141.0          | 0.200          | 0.00           |            | 0.0          | 0.600          | 0           | 300         | Pipe/Conduit                 | 8              |
| 2.003          | 12.515          | 0.050          | 250.0          | 0.023          | 0.00           |            | 0.0          | 0.600          | 0           | 300         | Pipe/Conduit                 | 8              |
| 1.005          | 12.649          | 0.051          | 250.0          | 0.000          | 0.00           |            | 0.0          | 0.600          | 0           | 375         | Pipe/Conduit                 | 8              |

| PN             | Rain<br>(mm/hr) | T.C.<br>(mins) | US/IL<br>(m)     | Σ I.Area<br>(ha) | Σ Base<br>Flow (l/s) | Foul<br>(1/s) | Add Flow<br>(l/s) | Vel<br>(m/s) | Cap<br>(1/s) | Flow<br>(1/s) |
|----------------|-----------------|----------------|------------------|------------------|----------------------|---------------|-------------------|--------------|--------------|---------------|
| 4.000<br>4.001 | 34.44<br>34.25  | 5.46<br>5.55   | 51.774<br>51.608 | 0.065<br>0.065   | 0.0                  | 0.0           | 0.0               | 1.01<br>1.02 | 40.1<br>40.6 | 6.0<br>6.0    |
| 3.001          | 32.09           | 6.71           | 51.574           | 0.403            | 0.0                  | 0.0           | 0.0               | 1.32         | 93.5         | 35.0          |
| 2.003          | 30.85           | 7.48           | 51.050           | 0.708            | 0.0                  | 0.0           | 0.0               | 0.99         | 70.0         | 59.1          |
| 1.005          | 29.50           | 8.43           | 51.000           | 1.122            | 0.0                  | 0.0           | 0.0               | 1.14         | 126.1        | 89.6          |

| Walsh Design Group                     |                         | Page 2   |
|----------------------------------------|-------------------------|----------|
| The Mall, Maryborough Woods            | Residential Development |          |
| Douglas                                | Coolcarron              |          |
| Co. Cork Ireland                       | Fermoy                  | Mirro    |
| Date 03/03/2022 09:14                  | Designed by IR          | Desinado |
| File Coolcarron_Model_4.1_DRAINAGE.mdx | Checked by MW           | Diamage  |
| XP Solutions                           | Network 2018.1.1        |          |

| mainifeld benediales for sarrade medmorn o |
|--------------------------------------------|
|--------------------------------------------|

| MH<br>Name | MH<br>CL (m) | MH<br>Depth<br>(m) | Conr | MH<br>nection | MH<br>Diam.,L*W<br>(mm) | PN    | Pipe Out<br>Invert<br>Level (m) | Diameter<br>(mm) | PN    | Pipes In<br>Invert<br>Level (m) | Diameter<br>(mm) | Backdrop<br>(mm) |
|------------|--------------|--------------------|------|---------------|-------------------------|-------|---------------------------------|------------------|-------|---------------------------------|------------------|------------------|
|            |              |                    |      |               |                         |       |                                 |                  |       |                                 |                  |                  |
| S14        | 53.636       | 1.280              | Open | Manhole       | 1200                    | 1.000 | 52.356                          | 225              |       |                                 |                  |                  |
| S15        | 53.449       | 1.353              | Open | Manhole       | 1200                    | 1.001 | 52.096                          | 225              | 1.000 | 52.096                          | 225              |                  |
| S16        | 53.407       | 1.374              | Open | Manhole       | 1200                    | 1.002 | 52.033                          | 300              | 1.001 | 52.033                          | 225              |                  |
| S17        | 53.513       | 1.828              | Open | Manhole       | 1200                    | 1.003 | 51.685                          | 300              | 1.002 | 51.685                          | 300              |                  |
| S18        | 53.209       | 1.816              | Open | Manhole       | 1200                    | 1.004 | 51.393                          | 300              | 1.003 | 51.393                          | 300              |                  |
| S19        | 53.043       | 1.107              | Open | Manhole       | 900 x 675               | 2.000 | 51.936                          | 225              |       |                                 |                  |                  |
| S20        | 53.093       | 1.279              | Open | Manhole       | 1200                    | 2.001 | 51.814                          | 225              | 2.000 | 51.814                          | 225              |                  |
| S21        | 52.587       | 1.175              | Open | Manhole       | 900 x 675               | 2.002 | 51.412                          | 300              | 2.001 | 51.412                          | 225              |                  |
| S22        | 53.231       | 1.281              | Open | Manhole       | 1200                    | 3.000 | 51.950                          | 300              |       |                                 |                  |                  |
| S23        | 53.030       | 1.256              | Open | Manhole       | 1200                    | 4.000 | 51.774                          | 225              |       |                                 |                  |                  |
| S24        | 52.863       | 1.255              | Open | Manhole       | 900 x 675               | 4.001 | 51.608                          | 225              | 4.000 | 51.608                          | 225              |                  |
| S25        | 52.821       | 1.247              | Open | Manhole       | 900 x 675               | 3.001 | 51.574                          | 300              | 3.000 | 51.574                          | 300              |                  |
|            |              |                    |      |               |                         |       |                                 |                  | 4.001 | 51.574                          | 225              |                  |
| S26        | 52.577       | 1.527              | Open | Manhole       | 1200                    | 2.003 | 51.050                          | 300              | 2.002 | 51.050                          | 300              |                  |
|            |              |                    |      |               |                         |       |                                 |                  | 3.001 | 51.050                          | 300              |                  |
| S27        | 52.480       | 1.480              | Open | Manhole       | 1350                    | 1.005 | 51.000                          | 375              | 1.004 | 51.001                          | 300              |                  |
|            |              |                    |      |               |                         |       |                                 |                  | 2.003 | 51.000                          | 300              |                  |
| S28        | 52.500       | 1.551              | Open | Manhole       | 1350                    |       | OUTFALL                         |                  | 1.005 | 50.949                          | 375              |                  |

| Walsh Design Group                     |                         |          |  |  |  |  |  |
|----------------------------------------|-------------------------|----------|--|--|--|--|--|
| The Mall, Maryborough Woods            | Residential Development |          |  |  |  |  |  |
| Douglas                                | Coolcarron              |          |  |  |  |  |  |
| Co. Cork Ireland                       | Fermoy                  | Mirro    |  |  |  |  |  |
| Date 03/03/2022 09:14                  | Designed by IR          | Dcainago |  |  |  |  |  |
| File Coolcarron_Model_4.1_DRAINAGE.mdx | Checked by MW           | Diamage  |  |  |  |  |  |
| XP Solutions                           | Network 2018.1.1        |          |  |  |  |  |  |

## PIPELINE SCHEDULES for Surface Network 6

## Upstream Manhole

| PN      | Hyd<br>Sect | Diam<br>(mm) | MH<br>Name | C.Level<br>(m) | I.Level<br>(m) | D.Depth<br>(m) | MH<br>Connection | MH DIAM., L*W<br>(mm) |
|---------|-------------|--------------|------------|----------------|----------------|----------------|------------------|-----------------------|
|         |             |              |            |                |                |                |                  |                       |
| 1.000   | 0           | 225          | S14        | 53.636         | 52.356         | 1.055          | Open Manhole     | 1200                  |
| 1.001   | 0           | 225          | S15        | 53.449         | 52.096         | 1.128          | Open Manhole     | 1200                  |
| 1.002   | 0           | 300          | S16        | 53.407         | 52.033         | 1.074          | Open Manhole     | 1200                  |
| 1.003   | 0           | 300          | S17        | 53.513         | 51.685         | 1.528          | Open Manhole     | 1200                  |
| 1.004   | 0           | 300          | S18        | 53.209         | 51.393         | 1.516          | Open Manhole     | 1200                  |
|         |             |              |            |                |                |                |                  |                       |
| 2.000   | 0           | 225          | S19        | 53.043         | 51.936         | 0.882          | Open Manhole     | 900 x 675             |
| 2.001   | 0           | 225          | S20        | 53.093         | 51.814         | 1.054          | Open Manhole     | 1200                  |
| 2.002   | 0           | 300          | S21        | 52.587         | 51,412         | 0.875          | Open Manhole     | 900 x 675             |
|         | ÷           |              |            |                |                |                | -F               |                       |
| 3 000   | 0           | 300          | 922        | 53 231         | 51 950         | 0 981          | Open Manhole     | 1200                  |
| 5.000   | 0           | 500          | 022        | 55.251         | 51.950         | 0.901          | open namore      | 1200                  |
| 4 000   | 0           | 225          | 923        | 53 030         | 51 774         | 1 031          | Open Manhole     | 1200                  |
| 4 001   | 0           | 225          | 02J        | 52 962         | 51 609         | 1 020          | Open Manhole     | 900 v 675             |
| 4.001   | 0           | 225          | 524        | 52.005         | 51.000         | 1.030          | open Mannore     | 900 X 075             |
| 2 0 0 1 | 0           | 200          | 0.0 E      | E2 021         | E1 E7/         | 0 047          | Open Manhala     | 000 7 675             |
| 3.001   | 0           | 300          | 525        | JZ.021         | 51.574         | 0.947          | open Mannore     | 900 x 075             |
| 2 002   | 0           | 200          | 996        | E0 E77         | E1 0E0         | 1 227          | Open Manhala     | 1200                  |
| 2.003   | 0           | 300          | 520        | 54.577         | 51.050         | 1.22/          | open mannore     | 1200                  |
| 1 005   |             | 275          | 0.07       | ED 400         | F1 000         | 1 105          | Onen Manhala     | 1250                  |
| 1.005   | 0           | 3/5          | 527        | 52.480         | 51.000         | 1.105          | open mannoie     | 1350                  |

## Downstream Manhole

| PN    | Length<br>(m) | Slope<br>(1:X) | MH<br>Name | C.Level<br>(m) | I.Level<br>(m) | D.Depth<br>(m) | MH<br>Connectio | MH DIAM., L*W<br>n (mm) |
|-------|---------------|----------------|------------|----------------|----------------|----------------|-----------------|-------------------------|
| 1.000 | 43.387        | 166.7          | S15        | 53.449         | 52.096         | 1.128          | Open Manho      | le 1200                 |
| 1.001 | 10.444        | 166.7          | S16        | 53.407         | 52.033         | 1.149          | Open Manho      | le 1200                 |
| 1.002 | 57.998        | 166.7          | S17        | 53.513         | 51.685         | 1.528          | Open Manho      | le 1200                 |
| 1.003 | 48.764        | 166.7          | S18        | 53.209         | 51.393         | 1.516          | Open Manho      | le 1200                 |
| 1.004 | 65.148        | 166.2          | S27        | 52.480         | 51.001         | 1.179          | Open Manho      | le 1350                 |
|       |               |                |            |                |                |                |                 |                         |
| 2.000 | 20.287        | 166.7          | S20        | 53.093         | 51.814         | 1.054          | Open Manho      | le 1200                 |
| 2.001 | 67.026        | 166.7          | S21        | 52.587         | 51.412         | 0.950          | Open Manho      | le 900 x 675            |
| 2.002 | 60.280        | 166.5          | S26        | 52.577         | 51.050         | 1.227          | Open Manho      | le 1200                 |
|       |               |                |            |                |                |                |                 |                         |
| 3.000 | 58.466        | 155.5          | S25        | 52.821         | 51.574         | 0.947          | Open Manho      | le 900 x 675            |
|       |               |                |            |                |                |                |                 |                         |
| 4.000 | 27.592        | 166.7          | S24        | 52.863         | 51.608         | 1.030          | Open Manho      | le 900 x 675            |
| 4.001 | 5.557         | 162.9          | S25        | 52.821         | 51.574         | 1.022          | Open Manho      | le 900 x 675            |
|       |               |                |            |                |                |                |                 |                         |
| 3.001 | 73.898        | 141.0          | S26        | 52.577         | 51.050         | 1.227          | Open Manho      | le 1200                 |
|       |               |                |            |                |                |                |                 |                         |
| 2.003 | 12.515        | 250.0          | S27        | 52.480         | 51.000         | 1.180          | Open Manho      | le 1350                 |
|       |               |                |            |                |                |                |                 |                         |
| 1.005 | 12.649        | 250.0          | S28        | 52.500         | 50.949         | 1.176          | Open Manho      | le 1350                 |
|       |               |                |            |                |                |                |                 |                         |

# Free Flowing Outfall Details for Surface Network 6

| Outfall |        | Outfall | c. | Level  | I. | Level  |    | Min   | D,L  | W    |
|---------|--------|---------|----|--------|----|--------|----|-------|------|------|
| Pipe    | Number | Name    |    | (m)    |    | (m)    | I. | Level | (mm) | (mm) |
|         |        |         |    |        |    |        |    | (m)   |      |      |
|         | 1.005  | S28     | !  | 52.500 | ļ  | 50.949 |    | 0.000 | 1350 | 0    |

| Walsh Design Group                     |                         |          |  |  |  |  |  |
|----------------------------------------|-------------------------|----------|--|--|--|--|--|
| The Mall, Maryborough Woods            | Residential Development |          |  |  |  |  |  |
| Douglas                                | Coolcarron              |          |  |  |  |  |  |
| Co. Cork Ireland                       | Fermoy                  | Micro    |  |  |  |  |  |
| Date 03/03/2022 09:14                  | Designed by IR          | Desinado |  |  |  |  |  |
| File Coolcarron_Model_4.1_DRAINAGE.mdx | Checked by MW           | Diamage  |  |  |  |  |  |
| XP Solutions                           | Network 2018.1.1        | 1        |  |  |  |  |  |

## Simulation Criteria for Surface Network 6

| Volumetric Runoff Coeff         | 0.750 | Additional Flow - % of Total Flow   | 0.000 |
|---------------------------------|-------|-------------------------------------|-------|
| Areal Reduction Factor          | 1.000 | MADD Factor * 10m³/ha Storage       | 2.000 |
| Hot Start (mins)                | 0     | Inlet Coeffiecient                  | 0.800 |
| Hot Start Level (mm)            | 0     | Flow per Person per Day (1/per/day) | 0.000 |
| Manhole Headloss Coeff (Global) | 0.500 | Run Time (mins)                     | 60    |
| Foul Sewage per hectare (l/s)   | 0.000 | Output Interval (mins)              | 1     |

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

## Synthetic Rainfall Details

| Rainfall Model        |             | FSR        | Profile           | Type Summer |
|-----------------------|-------------|------------|-------------------|-------------|
| Return Period (years) |             | 1          | Cv (Sum           | mer) 0.750  |
| Region                | Scotland ar | nd Ireland | Cv (Win           | ter) 0.840  |
| M5-60 (mm)            |             | 17.000     | Storm Duration (m | ins) 30     |
| Ratio R               |             | 0.200      |                   |             |

| Walsh Design Group                     |                                                       | Page 5 |
|----------------------------------------|-------------------------------------------------------|--------|
| The Mall, Maryborough Woods            | Residential Development                               |        |
| Douglas                                | Coolcarron                                            |        |
| Co. Cork Ireland                       | Fermoy                                                | Mirro  |
| Date 03/03/2022 09:14                  | Desinado                                              |        |
| File Coolcarron_Model_4.1_DRAINAGE.mdx | Diamage                                               |        |
| XP Solutions                           | Network 2018.1.1                                      | 1      |
| Online Cont:                           | rols for Surface Network 6                            |        |
| Hydro-Brake® Optimum Manho             | ole: S27, DS/PN: 1.005, Volume (m <sup>3</sup> ): 7.4 |        |
| Un:                                    | it Reference MD-SHE-0138-8200-0617-8200               |        |
| Des:                                   | ign Head (m) 0.617                                    |        |
| Design                                 | n Flow (1/s) 8.2                                      |        |
|                                        | Flush-Flo™ Calculated                                 |        |
|                                        | Application Surface                                   |        |
| Sur                                    | mp Available Yes                                      |        |
| D:                                     | iameter (mm) 138                                      |        |
| Inve                                   | rt Level (m) 51.000                                   |        |
| Minimum Outlet Pipe D:                 | iameter (mm) 225                                      |        |
| Suggested Manhole D:                   | iameter (mm) 1200                                     |        |
| Control Points Head (m) Fl             | .ow (l/s) Control Points Head (m) Flow                | (1/s)  |
| Design Point (Calculated) 0.617        | 8.2 Kick-Flo® 0.456                                   | 7.1    |
| Flush-Flo™ 0.221                       | 8.2 Mean Flow over Head Range -                       | 6.8    |

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

| Depth (m) | Flow | (l/s) | Depth | (m)  | Flow ( | L/s) | Depth | (m)  | Flow | (1/s) | Depth | (m) | Flow | (l/s) | Depth | (m) | Flow | (l/s) |
|-----------|------|-------|-------|------|--------|------|-------|------|------|-------|-------|-----|------|-------|-------|-----|------|-------|
|           |      |       |       |      |        |      |       |      |      |       |       |     |      |       |       |     |      |       |
| 0.100     |      | 5.0   | 0.    | .800 |        | 9.3  | 2     | .000 |      | 14.3  | 4.    | 000 |      | 19.9  | 7.    | 000 |      | 26.0  |
| 0.200     |      | 8.2   | 1.    | .000 |        | 10.3 | 2     | .200 |      | 14.9  | 4.    | 500 |      | 21.0  | 7.    | 500 |      | 26.9  |
| 0.300     |      | 8.1   | 1.    | .200 |        | 11.2 | 2     | .400 |      | 15.6  | 5.    | 000 |      | 22.1  | 8.    | 000 |      | 27.8  |
| 0.400     |      | 7.7   | 1.    | .400 |        | 12.1 | 2     | .600 |      | 16.2  | 5.    | 500 |      | 23.2  | 8.    | 500 |      | 28.6  |
| 0.500     |      | 7.4   | 1.    | .600 |        | 12.8 | 3     | .000 |      | 17.3  | 6.    | 000 |      | 24.2  | 9.    | 000 |      | 29.5  |
| 0.600     |      | 8.1   | 1.    | .800 |        | 13.6 | 3     | .500 |      | 18.7  | 6.    | 500 |      | 25.0  | 9.    | 500 |      | 30.3  |

| Walsh Design Group                     |                         |          |  |  |  |  |  |
|----------------------------------------|-------------------------|----------|--|--|--|--|--|
| The Mall, Maryborough Woods            | Residential Development |          |  |  |  |  |  |
| Douglas                                | Coolcarron              |          |  |  |  |  |  |
| Co. Cork Ireland                       | Fermoy                  | Mirro    |  |  |  |  |  |
| Date 03/03/2022 09:14                  | Designed by IR          | Dcainago |  |  |  |  |  |
| File Coolcarron_Model_4.1_DRAINAGE.mdx | Checked by MW           | Diamaye  |  |  |  |  |  |
| XP Solutions                           | Network 2018.1.1        |          |  |  |  |  |  |

## Storage Structures for Surface Network 6

Tank or Pond Manhole: S27, DS/PN: 1.005

Invert Level (m) 51.000

| Depth | (m) | Area | (m²)  | Depth | (m)  | Area | (m²) | Depth | (m)  | Area | (m²) | Depth | (m) | Area | (m²) | Depth | (m) | Area | (m²) |
|-------|-----|------|-------|-------|------|------|------|-------|------|------|------|-------|-----|------|------|-------|-----|------|------|
| 0.    | 000 | 4    | 480.0 | 1     | .200 | 4    | 80.0 | 2     | .400 |      | 0.0  | 3.    | 600 |      | 0.0  | 4.    | 800 |      | 0.0  |
| 0.    | 200 | 4    | 480.0 | 1     | .400 |      | 0.0  | 2     | .600 |      | 0.0  | 3.    | 800 |      | 0.0  | 5.    | 000 |      | 0.0  |
| 0.    | 400 | 4    | 480.0 | 1     | .600 |      | 0.0  | 2     | .800 |      | 0.0  | 4.    | 000 |      | 0.0  |       |     |      |      |
| 0.    | 600 | 4    | 480.0 | 1     | .800 |      | 0.0  | 3     | .000 |      | 0.0  | 4.    | 200 |      | 0.0  |       |     |      |      |
| 0.    | 800 | 4    | 480.0 | 2     | .000 |      | 0.0  | 3     | .200 |      | 0.0  | 4.    | 400 |      | 0.0  |       |     |      |      |
| 1.    | 000 | 4    | 480.0 | 2     | .200 |      | 0.0  | 3     | .400 |      | 0.0  | 4.    | 600 |      | 0.0  |       |     |      |      |

| Walsh Design Group                     |                         |          |  |  |  |  |  |
|----------------------------------------|-------------------------|----------|--|--|--|--|--|
| The Mall, Maryborough Woods            | Residential Development |          |  |  |  |  |  |
| Douglas                                | Coolcarron              |          |  |  |  |  |  |
| Co. Cork Ireland                       | Fermoy                  | Mirro    |  |  |  |  |  |
| Date 03/03/2022 09:14                  | Designed by IR          | Drainago |  |  |  |  |  |
| File Coolcarron_Model_4.1_DRAINAGE.mdx | Checked by MW           | Diamaye  |  |  |  |  |  |
| XP Solutions                           | Network 2018.1.1        |          |  |  |  |  |  |
|                                        |                         |          |  |  |  |  |  |

### Summary of Critical Results by Maximum Level (Rank 1) for Surface Network 6

#### Simulation Criteria

Areal Reduction Factor1.000Additional Flow - % of Total Flow 0.000<br/>MADD Factor \* 10m³/ha Storage 2.000<br/>Inlet Coefficient 0.800Manhole Headloss Coeff (Global)0.500Flow per Person per Day (l/per/day)Foul Sewage per hectare (l/s)0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall ModelFSR M5-60 (mm) 17.000 Cv (Summer) 0.750Region Scotland and IrelandRatio R 0.200 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 5.0 DVD Status ON Analysis Timestep Fine Inertia Status OFF DTS Status ON

 Profile(s)
 Summer and Winter

 Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440

 Return Period(s) (years)
 1, 30, 100

 Climate Change (%)
 20, 20, 20

| PN    | US/MH<br>Name | s   | torm   | Return<br>Period | Climate<br>Change | First<br>Surcl | t (X)<br>narge | First (Y)<br>Flood | First<br>Overfl | (Z)<br>Low | Overflow<br>Act. | Water<br>Level<br>(m) | Surcharged<br>Depth<br>(m) | Flooded<br>Volume<br>(m³) |
|-------|---------------|-----|--------|------------------|-------------------|----------------|----------------|--------------------|-----------------|------------|------------------|-----------------------|----------------------------|---------------------------|
| 1 000 | S14           | 15  | Winter | 100              | +20%              | 30/15          | Summer         |                    |                 |            |                  | 53 011                | 0 430                      | 0 000                     |
| 1.001 | S15           | 15  | Winter | 100              | +20%              | 30/15          | Summer         |                    |                 |            |                  | 52.639                | 0.318                      | 0.000                     |
| 1.002 | S16           | 15  | Winter | 100              | +20%              | 100/15         | Summer         |                    |                 |            |                  | 52.514                | 0.180                      | 0.000                     |
| 1.003 | S17           | 960 | Winter | 100              | +20%              | 30/15          | Summer         |                    |                 |            |                  | 52.368                | 0.383                      | 0.000                     |
| 1.004 | S18           | 960 | Winter | 100              | +20%              | 30/15          | Winter         |                    |                 |            |                  | 52.362                | 0.669                      | 0.000                     |
| 2.000 | S19           | 15  | Winter | 100              | +20%              | 30/15          | Winter         |                    |                 |            |                  | 52.600                | 0.440                      | 0.000                     |
| 2.001 | S20           | 15  | Winter | 100              | +20%              | 30/15          | Summer         |                    |                 |            |                  | 52.579                | 0.540                      | 0.000                     |
| 2.002 | S21           | 960 | Winter | 100              | +20%              | 30/15          | Summer         |                    |                 |            |                  | 52.366                | 0.654                      | 0.000                     |
| 3.000 | S22           | 15  | Winter | 100              | +20%              | 100/15         | Summer         |                    |                 |            |                  | 52.566                | 0.316                      | 0.000                     |
| 4.000 | S23           | 15  | Winter | 100              | +20%              | 30/15          | Summer         |                    |                 |            |                  | 52.517                | 0.518                      | 0.000                     |
| 4.001 | S24           | 30  | Summer | 100              | +20%              | 30/15          | Summer         |                    |                 |            |                  | 52.476                | 0.643                      | 0.000                     |
| 3.001 | S25           | 30  | Summer | 100              | +20%              | 30/15          | Summer         |                    |                 |            |                  | 52.462                | 0.588                      | 0.000                     |
| 2.003 | S26           | 960 | Winter | 100              | +20%              | 1/15           | Summer         |                    |                 |            |                  | 52.361                | 1.011                      | 0.000                     |
| 1.005 | S27           | 960 | Winter | 100              | +20%              | 1/360          | Winter         |                    |                 |            |                  | 52.354                | 0.980                      | 0.000                     |

|       |       |        |          | Pipe  |            |          |
|-------|-------|--------|----------|-------|------------|----------|
|       | US/MH | Flow / | Overflow | Flow  |            | Level    |
| PN    | Name  | Cap.   | (1/s)    | (l/s) | Status     | Exceeded |
| 1.000 | S14   | 1.25   |          | 47.7  | SURCHARGED |          |
| 1.001 | s15   | 1.44   |          | 48.5  | SURCHARGED |          |
| 1.002 | S16   | 0.84   |          | 68.9  | SURCHARGED |          |
| 1.003 | S17   | 0.20   |          | 16.5  | SURCHARGED |          |
| 1.004 | S18   | 0.20   |          | 16.5  | SURCHARGED |          |
| 2.000 | S19   | 0.32   |          | 11.7  | SURCHARGED |          |
| 2.001 | S20   | 1.15   |          | 44.9  | SURCHARGED |          |
| 2.002 | S21   | 0.14   |          | 11.1  | SURCHARGED |          |
| 3.000 | S22   | 0.46   |          | 39.1  | SURCHARGED |          |
| 4.000 | S23   | 0.47   |          | 17.5  | SURCHARGED |          |
| 4.001 | S24   | 0.61   |          | 18.3  | SURCHARGED |          |
| 3.001 | S25   | 1.12   |          | 100.8 | SURCHARGED |          |
| 2.003 | S26   | 0.48   |          | 27.4  | SURCHARGED |          |
| 1.005 | S27   | 0.12   |          | 11.9  | SURCHARGED |          |
|       |       |        |          |       |            |          |

| Walsh Design Group                     |                         |          |  |  |  |  |
|----------------------------------------|-------------------------|----------|--|--|--|--|
| The Mall, Maryborough Woods            | Residential Development |          |  |  |  |  |
| Douglas                                | Coolcarron              |          |  |  |  |  |
| Co. Cork Ireland                       | Fermoy                  | Micro    |  |  |  |  |
| Date 03/03/2022 09:15                  | Designed by IR          | Desinado |  |  |  |  |
| File Coolcarron_Model_4.1_DRAINAGE.mdx | Checked by MW           | Diamage  |  |  |  |  |
| XP Solutions                           | Network 2018.1.1        |          |  |  |  |  |

### STORM SEWER DESIGN by the Modified Rational Method

#### Design Criteria for Surface Network 7

Pipe Sizes Storm Manhole Sizes IW-MH

FSR Rainfall Model - Scotland and IrelandReturn Period (years)1PIMP (%)100M5-60 (mm)17.000Add Flow / Climate Change (%)0Ratio R0.200Minimum Backdrop Height (m)0.200Maximum Rainfall (mm/hr)50Maximum Backdrop Height (m)2.500Maximum Time of Concentration (mins)30Min Design Depth for Optimisation (m)1.200Foul Sewage (l/s/ha)0.000Min Vel for Auto Design only (m/s)1.00Volumetric Runoff Coeff.0.750Min Slope for Optimisation (1:X)500

Designed with Level Inverts

Time Area Diagram for Surface Network 7

| Time   | Area  | Time   | Area  |
|--------|-------|--------|-------|
| (mins) | (ha)  | (mins) | (ha)  |
| 0-4    | 0.264 | 4-8    | 0.194 |

Total Area Contributing (ha) = 0.458

Total Pipe Volume  $(m^3) = 8.872$ 

Network Design Table for Surface Network 7

| PN    | Length<br>(m) | Fall<br>(m) | Slope<br>(1:X) | I.Area<br>(ha) | T.E.<br>(mins) | Ba<br>Flow | ase<br>(1/s) | k<br>(mm) | HYD<br>SECT | DIA<br>(mm) | Section Type | Auto<br>Design |
|-------|---------------|-------------|----------------|----------------|----------------|------------|--------------|-----------|-------------|-------------|--------------|----------------|
| 1.000 | 18.130        | 0.109       | 166.7          | 0.063          | 5.00           |            | 0.0          | 0.600     | 0           | 225         | Pipe/Conduit | 8              |
| 1.001 | 3.990         | 0.024       | 166.7          | 0.000          | 0.00           |            | 0.0          | 0.600     | 0           | 225         | Pipe/Conduit | ā              |
| 1.002 | 10.610        | 0.071       | 150.1          | 0.009          | 0.00           |            | 0.0          | 0.600     | 0           | 225         | Pipe/Conduit | Ō              |
| 2.000 | 21.431        | 0.129       | 166.7          | 0.052          | 5.00           |            | 0.0          | 0.600     | 0           | 225         | Pipe/Conduit | 8              |
| 1.003 | 29.344        | 0.176       | 166.7          | 0.045          | 0.00           |            | 0.0          | 0.600     | 0           | 225         | Pipe/Conduit | 8              |
| 3.000 | 37.823        | 0.240       | 157.8          | 0.109          | 5.00           |            | 0.0          | 0.600     | 0           | 225         | Pipe/Conduit | ۵              |
| 1.004 | 22.473        | 0.135       | 166.7          | 0.014          | 0.00           |            | 0.0          | 0.600     | 0           | 225         | Pipe/Conduit | •              |

| PN    | Rain       | T.C.   | US/IL  | Σ I.Area | $\Sigma$ Base | Foul  | Add Flow | Vel<br>(m(a) | Cap   | Flow  |
|-------|------------|--------|--------|----------|---------------|-------|----------|--------------|-------|-------|
|       | (1111/111) | (mins) | (111)  | (IIA)    | FIOW (1/S)    | (1/5) | (1/5)    | (m/s)        | (1/5) | (1/5) |
| 1.000 | 34.78      | 5.30   | 51.536 | 0.063    | 0.0           | 0.0   | 0.0      | 1.01         | 40.1  | 6.0   |
| 1.001 | 34.63      | 5.37   | 51.427 | 0.063    | 0.0           | 0.0   | 0.0      | 1.01         | 40.1  | 6.0   |
| 1.002 | 34.28      | 5.53   | 51.403 | 0.072    | 0.0           | 0.0   | 0.0      | 1.06         | 42.3  | 6.7   |
|       |            |        |        |          |               |       |          |              |       |       |
| 2.000 | 34.66      | 5.35   | 51.461 | 0.052    | 0.0           | 0.0   | 0.0      | 1.01         | 40.1  | 4.9   |
|       |            |        |        |          |               |       |          |              |       |       |
| 1.003 | 33.31      | 6.02   | 51.332 | 0.169    | 0.0           | 0.0   | 0.0      | 1.01         | 40.1  | 15.3  |
|       |            |        |        |          |               |       |          |              |       |       |
| 3.000 | 34.13      | 5.61   | 51.396 | 0.109    | 0.0           | 0.0   | 0.0      | 1.04         | 41.3  | 10.1  |
| 1 004 | 22 64      | 6 20   | F1 1FC | 0 201    | 0.0           | 0 0   | 0 0      | 1 01         | 40 1  | 25 0  |
| 1.004 | 32.04      | 0.39   | 51.120 | 0.291    | 0.0           | 0.0   | 0.0      | 1.01         | 40.1  | 25.0  |

| Walsh Design Group                     |                         |          |  |  |  |  |  |
|----------------------------------------|-------------------------|----------|--|--|--|--|--|
| The Mall, Maryborough Woods            | Residential Development |          |  |  |  |  |  |
| Douglas                                | Coolcarron              |          |  |  |  |  |  |
| Co. Cork Ireland                       | Fermoy                  | Micro    |  |  |  |  |  |
| Date 03/03/2022 09:15                  | Designed by IR          | Desinado |  |  |  |  |  |
| File Coolcarron_Model_4.1_DRAINAGE.mdx | Checked by MW           | Diamaye  |  |  |  |  |  |
| XP Solutions                           | Network 2018.1.1        |          |  |  |  |  |  |

# Network Design Table for Surface Network 7

| PN             | Length          | Fall           | Slope          | I.Area         | T.E.         | Ba   | ase   | k              | HYD  | DIA        | Section Type                 | Auto          |
|----------------|-----------------|----------------|----------------|----------------|--------------|------|-------|----------------|------|------------|------------------------------|---------------|
|                | (m)             | (m)            | (1:X)          | (ha)           | (mins)       | Flow | (1/s) | (mm)           | SECT | (mm)       |                              | Design        |
| 4.000          | 50.707          | 0.327          | 155.3          | 0.112          | 5.00         |      | 0.0   | 0.600          | 0    | 225        | Pipe/Conduit                 | Ô             |
| 1.005<br>1.006 | 9.520<br>19.112 | 0.057<br>0.115 | 166.7<br>166.7 | 0.000<br>0.054 | 0.00<br>0.00 |      | 0.0   | 0.600<br>0.600 | 0    | 225<br>225 | Pipe/Conduit<br>Pipe/Conduit | <b>0</b><br>A |

| PN             | Rain<br>(mm/hr) | T.C.<br>(mins) | US/IL<br>(m)     | Σ I.Area<br>(ha) | Σ E<br>Flow | Base<br>(1/s) | Foul<br>(l/s) | Add Flow<br>(1/s) | Vel<br>(m/s) | Cap<br>(1/s) | Flow<br>(l/s) |
|----------------|-----------------|----------------|------------------|------------------|-------------|---------------|---------------|-------------------|--------------|--------------|---------------|
| 4.000          | 33.72           | 5.81           | 51.348           | 0.112            |             | 0.0           | 0.0           | 0.0               | 1.05         | 41.6         | 10.2          |
| 1.005<br>1.006 | 32.36<br>31.83  | 6.54<br>6.86   | 51.022<br>50.965 | 0.403<br>0.458   |             | 0.0           | 0.0           | 0.0               | 1.01<br>1.01 | 40.1<br>40.1 | 35.3<br>39.4  |

| Walsh Design Group                     |                         |          |  |  |  |  |  |
|----------------------------------------|-------------------------|----------|--|--|--|--|--|
| The Mall, Maryborough Woods            | Residential Development |          |  |  |  |  |  |
| Douglas                                | Coolcarron              |          |  |  |  |  |  |
| Co. Cork Ireland                       | Fermoy                  | Mirro    |  |  |  |  |  |
| Date 03/03/2022 09:15                  | Designed by IR          | Dcainago |  |  |  |  |  |
| File Coolcarron_Model_4.1_DRAINAGE.mdx | Checked by MW           | Diamaye  |  |  |  |  |  |
| XP Solutions                           | Network 2018.1.1        |          |  |  |  |  |  |

|  | Manhole | Schedules | for | Surface | Network | 7 |
|--|---------|-----------|-----|---------|---------|---|
|--|---------|-----------|-----|---------|---------|---|

| MH<br>Name | MH<br>CL (m) | MH<br>Depth<br>(m) | Conr | MH<br>nection | MH<br>Diam.,L*W<br>(mm) | PN    | Pipe Out<br>Invert<br>Level (m) | Diameter<br>(mm) | PN    | Pipes In<br>Invert<br>Level (m) | Diameter<br>(mm) | Backdrop<br>(mm) |
|------------|--------------|--------------------|------|---------------|-------------------------|-------|---------------------------------|------------------|-------|---------------------------------|------------------|------------------|
| S3         | 52.859       | 1.323              | Open | Manhole       | 1200                    | 1.000 | 51.536                          | 225              |       |                                 |                  |                  |
| S4         | 52.743       | 1.316              | Open | Manhole       | 900 x 675               | 1.001 | 51.427                          | 225              | 1.000 | 51.427                          | 225              |                  |
| S5         | 52.719       | 1.316              | Open | Manhole       | 900 x 675               | 1.002 | 51.403                          | 225              | 1.001 | 51.403                          | 225              |                  |
| S6         | 52.759       | 1.298              | Open | Manhole       | 1200                    | 2.000 | 51.461                          | 225              |       |                                 |                  |                  |
| S7         | 52.707       | 1.374              | Open | Manhole       | 900 x 675               | 1.003 | 51.332                          | 225              | 1.002 | 51.332                          | 225              |                  |
|            |              |                    |      |               |                         |       |                                 |                  | 2.000 | 51.332                          | 225              |                  |
| S8         | 52.649       | 1.252              | Open | Manhole       | 900 x 675               | 3.000 | 51.396                          | 225              |       |                                 |                  |                  |
| S9         | 52.636       | 1.479              | Open | Manhole       | 1200                    | 1.004 | 51.156                          | 225              | 1.003 | 51.156                          | 225              |                  |
|            |              |                    |      |               |                         |       |                                 |                  | 3.000 | 51.156                          | 225              |                  |
| S10        | 52.586       | 1.237              | Open | Manhole       | 900 x 675               | 4.000 | 51.348                          | 225              |       |                                 |                  |                  |
| S11        | 52.650       | 1.628              | Open | Manhole       | 1200                    | 1.005 | 51.022                          | 225              | 1.004 | 51.022                          | 225              |                  |
|            |              |                    |      |               |                         |       |                                 |                  | 4.000 | 51.022                          | 225              |                  |
| S12        | 52.600       | 1.635              | Open | Manhole       | 1200                    | 1.006 | 50.965                          | 225              | 1.005 | 50.965                          | 225              |                  |
| S13        | 52.600       | 1.750              | Open | Manhole       | 1200                    |       | OUTFALL                         |                  | 1.006 | 50.850                          | 225              |                  |

| Walsh Design Group                     |                         |          |  |  |  |  |  |
|----------------------------------------|-------------------------|----------|--|--|--|--|--|
| The Mall, Maryborough Woods            | Residential Development |          |  |  |  |  |  |
| Douglas                                | Coolcarron              |          |  |  |  |  |  |
| Co. Cork Ireland                       | Fermoy                  | Mirro    |  |  |  |  |  |
| Date 03/03/2022 09:15                  | Designed by IR          | Desinado |  |  |  |  |  |
| File Coolcarron_Model_4.1_DRAINAGE.mdx | Checked by MW           | Diamage  |  |  |  |  |  |
| XP Solutions                           | Network 2018.1.1        | 1        |  |  |  |  |  |

## PIPELINE SCHEDULES for Surface Network 7

## Upstream Manhole

| PN    | Hyd<br>Sect | Diam<br>(mm) | MH<br>Name | C.Level<br>(m) | I.Level<br>(m) | D.Depth<br>(m) | MH<br>Connection | MH DIAM., L*W<br>(mm) |
|-------|-------------|--------------|------------|----------------|----------------|----------------|------------------|-----------------------|
| 1.000 | 0           | 225          | S3         | 52.859         | 51.536         | 1.098          | Open Manhole     | 1200                  |
| 1.001 | 0           | 225          | S4         | 52.743         | 51.427         | 1.091          | Open Manhole     | 900 x 675             |
| 1.002 | 0           | 225          | S5         | 52.719         | 51.403         | 1.091          | Open Manhole     | 900 x 675             |
| 2.000 | 0           | 225          | S6         | 52.759         | 51.461         | 1.073          | Open Manhole     | 1200                  |
| 1.003 | 0           | 225          | S7         | 52.707         | 51.332         | 1.149          | Open Manhole     | 900 x 675             |
| 3.000 | 0           | 225          | S8         | 52.649         | 51.396         | 1.027          | Open Manhole     | 900 x 675             |
| 1.004 | 0           | 225          | S9         | 52.636         | 51.156         | 1.254          | Open Manhole     | 1200                  |
| 4.000 | 0           | 225          | S10        | 52.586         | 51.348         | 1.012          | Open Manhole     | 900 x 675             |
| 1.005 | 0           | 225          | S11        | 52.650         | 51.022         | 1.403          | Open Manhole     | 1200                  |
| 1.006 | 0           | 225          | S12        | 52.600         | 50.965         | 1.410          | Open Manhole     | 1200                  |

## Downstream Manhole

| PN             | Length<br>(m)   | Slope<br>(1:X) | MH<br>Name | C.Level<br>(m)   | I.Level<br>(m)   | D.Depth<br>(m) | MH<br>Connection             | MH DIAM., L*W<br>(mm) | Ā      |
|----------------|-----------------|----------------|------------|------------------|------------------|----------------|------------------------------|-----------------------|--------|
|                |                 |                |            |                  |                  |                |                              |                       |        |
| 1.000          | 18.130          | 166.7          | S4         | 52.743           | 51.427           | 1.091          | Open Manhole                 | 900 x 67              | 5      |
| 1.001          | 3.990           | 166.7          | S5         | 52.719           | 51.403           | 1.091          | Open Manhole                 | 900 x 67              | 5      |
| 1.002          | 10.610          | 150.1          | S7         | 52.707           | 51.332           | 1.149          | Open Manhole                 | 900 x 67              | 5      |
| 2.000          | 21.431          | 166.7          | S7         | 52.707           | 51.332           | 1.149          | Open Manhole                 | 900 x 67              | 5      |
| 1.003          | 29.344          | 166.7          | S9         | 52.636           | 51.156           | 1.254          | Open Manhole                 | 1200                  | )      |
| 3.000          | 37.823          | 157.8          | S9         | 52.636           | 51.156           | 1.254          | Open Manhole                 | 1200                  | )      |
| 1.004          | 22.473          | 166.7          | S11        | 52.650           | 51.022           | 1.403          | Open Manhole                 | 1200                  | )      |
| 4.000          | 50.707          | 155.3          | S11        | 52.650           | 51.022           | 1.403          | Open Manhole                 | 1200                  | )      |
| 1.005<br>1.006 | 9.520<br>19.112 | 166.7<br>166.7 | S12<br>S13 | 52.600<br>52.600 | 50.965<br>50.850 | 1.410<br>1.525 | Open Manhole<br>Open Manhole | 1200<br>1200          | )<br>) |
|                |                 |                |            |                  |                  |                |                              |                       |        |

Free Flowing Outfall Details for Surface Network 7

| Out<br>Pipe | tfall<br>Number | Outfall<br>Name | c. | Level<br>(m) | Ι. | Level<br>(m) | Ι. | Min<br>Level<br>(m) | D,L<br>(mm) | W<br>(mm) |
|-------------|-----------------|-----------------|----|--------------|----|--------------|----|---------------------|-------------|-----------|
|             | 1.006           | S13             | !  | 52.600       |    | 50.850       |    | 0.000               | 1200        | 0         |
| Walsh Design Group                     |                         | Page 4  |
|----------------------------------------|-------------------------|---------|
| The Mall, Maryborough Woods            | Residential Development |         |
| Douglas                                | Coolcarron              |         |
| Co. Cork Ireland                       | Fermoy                  | Micro   |
| Date 03/03/2022 09:15                  | Designed by IR          |         |
| File Coolcarron_Model_4.1_DRAINAGE.mdx | Checked by MW           | Diamage |
| XP Solutions                           | Network 2018.1.1        | 1       |

#### Simulation Criteria for Surface Network 7

| Volumetric Runoff Coeff         | 0.750 | Additional Flow - % of Total Flow   | 0.000 |
|---------------------------------|-------|-------------------------------------|-------|
| Areal Reduction Factor          | 1.000 | MADD Factor * 10m³/ha Storage       | 2.000 |
| Hot Start (mins)                | 0     | Inlet Coeffiecient                  | 0.800 |
| Hot Start Level (mm)            | 0     | Flow per Person per Day (l/per/day) | 0.000 |
| Manhole Headloss Coeff (Global) | 0.500 | Run Time (mins)                     | 60    |
| Foul Sewage per hectare (l/s)   | 0.000 | Output Interval (mins)              | 1     |

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

#### Synthetic Rainfall Details

| Rainfall Mode        | el          |     | FSR     |       | Prof    | ile Type | Summer |
|----------------------|-------------|-----|---------|-------|---------|----------|--------|
| Return Period (year) | з)          |     | 1       |       | Cv      | (Summer) | 0.750  |
| Regi                 | on Scotland | and | Ireland |       | Cv      | (Winter) | 0.840  |
| M5-60 (m             | n )         |     | 17.000  | Storm | Duratio | n (mins) | 30     |
| Ratio                | R           |     | 0.200   |       |         |          |        |

| Walsh Design Group                     |                                                        | Page 5  |
|----------------------------------------|--------------------------------------------------------|---------|
| The Mall, Maryborough Woods            | Residential Development                                |         |
| Douglas                                | Coolcarron                                             |         |
| Co. Cork Ireland                       | Fermoy                                                 | Micco   |
| Date 03/03/2022 09:15                  | Desinado                                               |         |
| File Coolcarron_Model_4.1_DRAINAGE.mdx | Checked by MW                                          | Diamage |
| XP Solutions                           | Network 2018.1.1                                       | I       |
| Online Cont                            | crols for Surface Network 7                            |         |
| Hydro-Brake® Optimum Manl              | nole: S12, DS/PN: 1.006, Volume (m <sup>3</sup> ): 2.2 |         |
| បា                                     | nit Reference MD-SHE-0093-3100-0282-3100               |         |
| Des                                    | sign Head (m) 0.282                                    |         |
| Desig                                  | gn Flow (1/s) 3.1                                      |         |
|                                        | Objective Minimise upstream storage                    |         |
|                                        | Application Surface                                    |         |
| Si                                     | ump Available Yes                                      |         |
| 1                                      | Diameter (mm) 93                                       |         |
| Inve                                   | ert Level (m) 50.965                                   |         |
| Minimum Outlet Pipe D                  | Diameter (mm) 150                                      |         |
| Suggested Manhole 1                    | Diameter (mm) 1200                                     |         |
| Control Points Head (m) F              | low (l/s) Control Points Head (m) Flow                 | (1/s)   |
| Design Point (Calculated) 0.282        | 3.1 Kick-Flo® 0.228                                    | 2.8     |
| Flush-Flo™ 0.133                       | 3.1 Mean Flow over Head Range -                        | 2.4     |

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

| Depth (m) | Flow | (l/s) | Depth | (m)  | Flow ( | l/s) | Depth | (m)  | Flow | (l/s) | Depth | (m) | Flow | (1/s) | Depth | (m) | Flow | (l/s) |
|-----------|------|-------|-------|------|--------|------|-------|------|------|-------|-------|-----|------|-------|-------|-----|------|-------|
|           |      |       |       |      |        |      |       |      |      |       |       |     |      |       |       |     |      |       |
| 0.100     |      | 3.0   | 0.    | .800 |        | 5.0  | 2.    | .000 |      | 7.7   | 4.    | 000 |      | 10.7  | 7.    | 000 |      | 14.2  |
| 0.200     |      | 3.0   | 1.    | .000 |        | 5.6  | 2.    | .200 |      | 8.1   | 4.    | 500 |      | 11.4  | 7.    | 500 |      | 14.8  |
| 0.300     |      | 3.2   | 1.    | .200 |        | 6.1  | 2.    | .400 |      | 8.4   | 5.    | 000 |      | 12.0  | 8.    | 000 |      | 15.2  |
| 0.400     |      | 3.6   | 1.    | .400 |        | 6.5  | 2.    | .600 |      | 8.7   | 5.    | 500 |      | 12.6  | 8.    | 500 |      | 15.7  |
| 0.500     |      | 4.0   | 1.    | .600 |        | 6.9  | 3.    | .000 |      | 9.3   | 6.    | 000 |      | 13.2  | 9.    | 000 |      | 16.2  |
| 0.600     |      | 4.4   | 1.    | .800 |        | 7.3  | 3.    | .500 |      | 10.0  | 6.    | 500 |      | 13.7  | 9.    | 500 |      | 16.6  |

| Walsh Design Group                     | Page 6                  |          |
|----------------------------------------|-------------------------|----------|
| The Mall, Maryborough Woods            | Residential Development |          |
| Douglas                                | Coolcarron              |          |
| Co. Cork Ireland                       | Fermoy                  | Mirro    |
| Date 03/03/2022 09:15                  | Designed by IR          | Dcainago |
| File Coolcarron_Model_4.1_DRAINAGE.mdx | Checked by MW           | Diamaye  |
| XP Solutions                           | Network 2018.1.1        |          |

#### Storage Structures for Surface Network 7

Tank or Pond Manhole: S12, DS/PN: 1.006

Invert Level (m) 50.965

| Depth (m | ı) Ar | ea (m²) | Depth | (m)   | Area (m²) | Depth ( | m) | Area (m²) | Depth (m | ) Area (m²) | Depth (m) | Area | (m² ) |
|----------|-------|---------|-------|-------|-----------|---------|----|-----------|----------|-------------|-----------|------|-------|
| 0.00     | 0     | 160.0   | 0.    | .600  | 160.0     | 1.2     | 00 | 160.0     | 1.80     | 0 0.0       | 2.400     |      | 0.0   |
| 0.10     | 0     | 160.0   | 0.    | .700  | 160.0     | 1.3     | 00 | 160.0     | 1.90     | 0 0.0       | 2.500     |      | 0.0   |
| 0.20     | 0     | 160.0   | 0.    | . 800 | 160.0     | 1.4     | 00 | 0.0       | 2.00     | 0 0.0       |           |      |       |
| 0.30     | 0     | 160.0   | 0.    | .900  | 160.0     | 1.5     | 00 | 0.0       | 2.10     | 0 0.0       |           |      |       |
| 0.40     | 0     | 160.0   | 1.    | .000  | 160.0     | 1.6     | 00 | 0.0       | 2.20     | 0 0.0       |           |      |       |
| 0.50     | 0     | 160.0   | 1.    | .100  | 160.0     | 1.7     | 00 | 0.0       | 2.30     | 0.0         | 1         |      |       |

| Walsh  | . Desi     | .gn Gro                  | up                                                    |                                                                                       |                                                                      |                                                                              |                                                                                    |                                                             |                                    |                                                                        |                                                               |                                                                              | Page 7              |                       |
|--------|------------|--------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------|---------------------|-----------------------|
| The M  | Iall,      | Marybo                   | rough Wo                                              | ods                                                                                   |                                                                      | Re                                                                           | esidentia                                                                          | l Devel                                                     | lopr                               | ment                                                                   |                                                               |                                                                              |                     |                       |
| Dougl  | as         |                          |                                                       |                                                                                       |                                                                      | Co                                                                           | olcarron                                                                           |                                                             |                                    |                                                                        |                                                               |                                                                              |                     |                       |
| Co. C  | lork       | Irela                    | nd                                                    |                                                                                       |                                                                      | Fe                                                                           | Fermoy                                                                             |                                                             |                                    |                                                                        |                                                               |                                                                              |                     |                       |
| Date   | 03/03      | /2022                    | 09:15                                                 |                                                                                       |                                                                      | De                                                                           | signed b                                                                           | V TR                                                        |                                    |                                                                        |                                                               |                                                                              | MILL                | and the second second |
| Filo   | Coole      |                          | Modol 4                                               | זאדגסם 1                                                                              | ACE ma                                                               | Av Ch                                                                        | bighted by                                                                         | MM                                                          |                                    |                                                                        |                                                               |                                                                              | Drain               | age                   |
| FIIE   | 1          | arron_                   | MODEL_4                                               | I_DRAIN                                                                               | AGE . IIIC                                                           |                                                                              | tecked by                                                                          | 10 1 1                                                      |                                    |                                                                        |                                                               |                                                                              |                     |                       |
| XP SC  | futic      | ons                      |                                                       |                                                                                       |                                                                      | NE                                                                           | etwork 20                                                                          | 18.1.1                                                      |                                    |                                                                        |                                                               |                                                                              |                     |                       |
|        |            | Summar                   | y of Cr                                               | itical R                                                                              | esults                                                               | s by Ma                                                                      | aximum Le                                                                          | vel (R                                                      | ank                                | 1) for                                                                 | Surfa                                                         | ce Netwo                                                                     | <u>ck 7</u>         |                       |
|        | Ъ          | Ma<br>Jumber o<br>Number | Ar<br>nhole Hea<br>Foul Sewa<br>f Input H<br>of Onlin | eal Reduc<br>Hot S<br>Hot Start<br>dloss Coe<br>ge per he<br>ydrograph:<br>e Control; | tion Fa<br>tart (r<br>Level<br>ff (Glo<br>ctare (<br>s 0 1<br>s 1 Nu | <u>Sim</u><br>actor 1.<br>nins)<br>(mm)<br>obal) 0.<br>(1/s) 0.<br>Number of | 1lation Cr:<br>000 Add<br>0<br>.500 Flow 1<br>.000<br>of Offline<br>Storage Si     | lteria<br>itional<br>MADD Fa<br>per Pers<br>Control         | Flow<br>ctor<br>on p<br>s 0<br>s 1 | w - % of<br>r * 10m³/<br>Inlet Co<br>per Day (<br>Number o<br>Number o | Total F<br>ha Stor<br>effieci<br>l/per/d<br>f Time/<br>f Real | low 0.000<br>age 2.000<br>ent 0.800<br>ay) 0.000<br>Area Diagr<br>Time Contr | ams 0<br>ols 0      |                       |
|        |            |                          | Rainfal                                               | l Model<br>Region S<br>Margin for                                                     | cotland                                                              | Synthet<br>1 and Ir<br>Risk Wa<br>Analys                                     | <u>ic Rainfal</u><br>FSR M5-6<br>celand I<br>arning (mm<br>is Timeste<br>DTS Statu | l Detail<br>50 (mm)<br>Ratio R<br>) 5.0<br>p Fine J<br>s ON | <u>ls</u><br>17.(<br>0.2           | 000 Cv (S<br>200 Cv (W<br>DVD Statu<br>tia Statu                       | ummer)<br>(inter)<br>15 ON<br>15 OFF                          | 0.750<br>0.840                                                               |                     |                       |
|        |            | Ret                      | Durati<br>urn Peric<br>Climat                         | Profile<br>on(s) (mi<br>d(s) (yea<br>e Change                                         | (s)<br>ns) 15<br>rs)<br>(%)                                          | , 30, 60                                                                     | 0, 120, 18                                                                         | 0, 240,                                                     | 360,                               | , 480, 60                                                              | Summer<br>0, 720,                                             | and Winter<br>960, 1440<br>1, 30, 100<br>20, 20, 20                          |                     |                       |
|        |            |                          |                                                       |                                                                                       |                                                                      |                                                                              |                                                                                    |                                                             |                                    |                                                                        | Watam                                                         | Sumahamaa                                                                    | d Eloodod           |                       |
|        | US/MH      |                          | Retu                                                  | n Climate                                                                             | e Firs                                                               | st (X)                                                                       | First (Y)                                                                          | First                                                       | (Z)                                | Overflow                                                               | Level                                                         | Depth                                                                        | a Floodea<br>Volume | Flow /                |
| PN     | Name       | Stor                     | n Perio                                               | d Change                                                                              | Sure                                                                 | charge                                                                       | Flood                                                                              | Overfl                                                      | ow                                 | Act.                                                                   | (m)                                                           | (m)                                                                          | (m <sup>3</sup> )   | Cap.                  |
| 1      | ~ ~ ~      |                          |                                                       |                                                                                       | 00/15                                                                |                                                                              |                                                                                    |                                                             |                                    |                                                                        | 50 410                                                        | 0.65                                                                         | 1 0 0 0 0           | 0 40                  |
| 1.000  | S3         | 30 Win                   | ter 10                                                | 10 +20%                                                                               | 30/15<br>20/15                                                       | Summer                                                                       |                                                                                    |                                                             |                                    |                                                                        | 52.412                                                        | 0.65                                                                         | 1 0.000             | 0.40                  |
| 1 002  | 54<br>95   | 20 Win                   | tor $10$                                              | 10 +20 €                                                                              | 5 30/15<br>20/15                                                     | Summor                                                                       |                                                                                    |                                                             |                                    |                                                                        | 52.303                                                        | 0.73                                                                         | L 0.000             | 0.52                  |
| 2 000  | 55         | 30 Win                   | tor $1($                                              | 10 +20%                                                                               | > 30/15                                                              | Summer                                                                       |                                                                                    |                                                             |                                    |                                                                        | 52.374                                                        | 0.74                                                                         | 1 0 000             | 0.40                  |
| 1 003  | 27         | 30 Win                   | ter 10                                                | 10 +20%                                                                               | \$ 30/15<br>\$ 30/15                                                 | Summer                                                                       |                                                                                    |                                                             |                                    |                                                                        | 52.377                                                        | 0.09                                                                         | 4 0 000             | 0.32                  |
| 3 000  | 57         | 720 Win                  | tor 10                                                | 10 ±20%                                                                               | 20/15                                                                | Summer                                                                       |                                                                                    |                                                             |                                    |                                                                        | 52.301                                                        | 0.75                                                                         | 4 0.000<br>8 0.000  | 0.07                  |
| 1 004  | 20         | 720 Win                  | ter 10                                                | 10 +20%                                                                               | 5 30/13<br>5 1/240                                                   | Winter                                                                       |                                                                                    |                                                             |                                    |                                                                        | 52.309                                                        | 0.00                                                                         | 3 0.000             | 0.13                  |
| 4 0004 | 010<br>010 | 720 WII                  | tor $10$                                              | ru ⊤∠U3<br>10 ⊥⊃∩≪                                                                    | 5 1/24U<br>5 20/15                                                   | Summor                                                                       |                                                                                    |                                                             |                                    |                                                                        | 52.305                                                        | 0.92                                                                         | 7 0.000             | 0.37                  |
| 1 005  | S10<br>C11 | 720 WII                  | tor 10                                                | 10 ±20€                                                                               | > >U/15                                                              | Suillier                                                                     |                                                                                    |                                                             |                                    |                                                                        | 52.3UI                                                        | 1 04                                                                         | , 0.000<br>8 0.000  | 0.13                  |
| 1.005  | S11<br>S12 | 720 Win<br>720 Win       | ter 10.                                               | 10 +20%                                                                               | s 1/15                                                               | Summer                                                                       |                                                                                    |                                                             |                                    |                                                                        | 52.295                                                        | 1.04                                                                         | 8 0.000             | 0.18                  |
|        |            |                          |                                                       |                                                                                       |                                                                      |                                                                              | Pipe                                                                               |                                                             |                                    |                                                                        |                                                               |                                                                              |                     |                       |

|       |       |          | гіре  |            |          |
|-------|-------|----------|-------|------------|----------|
|       | US/MH | Overflow | Flow  |            | Level    |
| PN    | Name  | (1/s)    | (l/s) | Status     | Exceeded |
|       |       |          |       |            |          |
| 1.000 | S3    |          | 14.5  | SURCHARGED |          |
| 1.001 | S4    |          | 14.3  | SURCHARGED |          |
| 1.002 | S5    |          | 16.3  | SURCHARGED |          |
| 2.000 | S6    |          | 11.6  | SURCHARGED |          |
| 1.003 | S7    |          | 36.5  | SURCHARGED |          |
| 3.000 | S8    |          | 5.2   | SURCHARGED |          |
| 1.004 | S9    |          | 13.6  | SURCHARGED |          |
| 4.000 | S10   |          | 5.4   | SURCHARGED |          |
| 1.005 | S11   |          | 18.8  | SURCHARGED |          |
| 1.006 | S12   |          | 6.3   | SURCHARGED |          |
|       |       |          |       |            |          |

# Appendix B

Wastewater Sewer Networks Design

| Walsh Design Group                     |                         | Page 0   |
|----------------------------------------|-------------------------|----------|
| The Mall, Maryborough Woods            | Residential Development |          |
| Douglas                                | Coolcarron              |          |
| Co. Cork Ireland                       | Fermoy                  | Micro    |
| Date 03/03/2022 08:50                  | Designed by IR          | Drainago |
| File Coolcarron_Model_4.2_DRAINAGE.mdx | Checked by MW           | Diamage  |
| XP Solutions                           | Network 2018.1.1        |          |

#### FOUL SEWERAGE DESIGN

#### Design Criteria for Foul Network 1

Pipe Sizes Foul Manhole Sizes IW-MH

| Industrial Flow (l/s/ha)    | 0.00   | Add Flow / Climate Change (%)         | 10    |
|-----------------------------|--------|---------------------------------------|-------|
| Industrial Peak Flow Factor | 0.00   | Minimum Backdrop Height (m)           | 0.500 |
| Flow Per Person (l/per/day) | 150.00 | Maximum Backdrop Height (m)           | 2.500 |
| Persons per House           | 2.70   | Min Design Depth for Optimisation (m) | 1.200 |
| Domestic (l/s/ha)           | 0.00   | Min Vel for Auto Design only (m/s)    | 0.75  |
| Domestic Peak Flow Factor   | 4.50   | Min Slope for Optimisation (1:X)      | 200   |

Designed with Level Inverts

Network Design Table for Foul Network 1

| PN    | Length | Fall  | Slope | Area  | Houses | Ba   | se    | k     | HYD  | DIA  | Section Type | Auto   |
|-------|--------|-------|-------|-------|--------|------|-------|-------|------|------|--------------|--------|
|       | (m)    | (m)   | (1:X) | (ha)  |        | Flow | (l/s) | (mm)  | SECT | (mm) |              | Design |
| 1.000 | 32.473 | 0.678 | 47.9  | 0.000 | 4      |      | 0.0   | 1.500 | 0    | 150  | Pipe/Conduit | •      |
| 1.001 | 41.970 | 0.811 | 51.8  | 0.000 | 5      |      | 0.0   | 1.500 | 0    | 150  | Pipe/Conduit | ē      |
| 2.000 | 28.726 | 0.479 | 60.0  | 0.000 | 3      |      | 0.0   | 1.500 | 0    | 150  | Pipe/Conduit | ۲      |
| 3.000 | 15.805 | 0.263 | 60.1  | 0.000 | 3      |      | 0.0   | 1.500 | 0    | 150  | Pipe/Conduit | 8      |
| 2.001 | 27.434 | 0.457 | 60.0  | 0.000 | 2      |      | 0.0   | 1.500 | 0    | 150  | Pipe/Conduit | ۵      |
| 1.002 | 60.807 | 0.304 | 200.0 | 0.000 | 8      |      | 0.0   | 1.500 | 0    | 225  | Pipe/Conduit | ۵      |
| 1.003 | 8.774  | 0.044 | 199.4 | 0.000 | 0      |      | 0.0   | 1.500 | 0    | 225  | Pipe/Conduit | Ā      |
| 1.004 | 70.203 | 0.351 | 200.0 | 0.000 | 8      |      | 0.0   | 1.500 | 0    | 225  | Pipe/Conduit | ē      |
| 1.005 | 6.252  | 0.031 | 201.7 | 0.000 | 0      |      | 0.0   | 1.500 | 0    | 225  | Pipe/Conduit | Ā      |
| 1.006 | 18.619 | 0.093 | 200.2 | 0.000 | 0      |      | 0.0   | 1.500 | 0    | 225  | Pipe/Conduit | ē      |
| 4.000 | 51.580 | 1.032 | 50.0  | 0.000 | 11     |      | 0.0   | 1.500 | 0    | 150  | Pipe/Conduit | 8      |
| 5.000 | 25.454 | 1.005 | 25.3  | 0.000 | 3      |      | 0.0   | 1.500 | 0    | 150  | Pipe/Conduit | 0      |

| PN    | US/IL<br>(m) | Σ Area<br>(ha) | Σ Base<br>Flow (l/s) | Σ Hse | Add Flow<br>(l/s) | P.Dep<br>(mm) | P.Vel<br>(m/s) | Vel<br>(m/s) | Cap<br>(1/s) | Flow<br>(1/s) |
|-------|--------------|----------------|----------------------|-------|-------------------|---------------|----------------|--------------|--------------|---------------|
| 1.000 | 54.106       | 0.000          | 0.0                  | 4     | 0.0               | 7             | 0.29           | 1.27         | 22.4         | 0.1           |
| 1.001 | 55.420       | 0.000          | 0.0                  | 9     | 0.0               | ΤŢ            | 0.37           | 1.22         | 21.0         | 0.2           |
| 2.000 | 53.050       | 0.000          | 0.0                  | 3     | 0.0               | 7             | 0.24           | 1.13         | 20.0         | 0.1           |
| 3.000 | 52.617       | 0.000          | 0.0                  | 3     | 0.0               | 7             | 0.24           | 1.13         | 20.0         | 0.1           |
| 2.001 | 52.354       | 0.000          | 0.0                  | 8     | 0.0               | 11            | 0.34           | 1.13         | 20.0         | 0.2           |
| 1.002 | 51.897       | 0.000          | 0.0                  | 25    | 0.1               | 21            | 0.30           | 0.81         | 32.2         | 0.6           |
| 1.003 | 51.593       | 0.000          | 0.0                  | 25    | 0.1               | 21            | 0.31           | 0.81         | 32.3         | 0.6           |
| 1.004 | 51.549       | 0.000          | 0.0                  | 33    | 0.1               | 24            | 0.33           | 0.81         | 32.2         | 0.8           |
| 1.005 | 51.198       | 0.000          | 0.0                  | 33    | 0.1               | 24            | 0.33           | 0.81         | 32.1         | 0.8           |
| 1.006 | 51.167       | 0.000          | 0.0                  | 33    | 0.1               | 24            | 0.33           | 0.81         | 32.2         | 0.8           |
| 4.000 | 53.406       | 0.000          | 0.0                  | 11    | 0.0               | 12            | 0.40           | 1.24         | 21.9         | 0.3           |
| 5.000 | 53.684       | 0.000          | 0.0                  | 3     | 0.0               | 6             | 0.33           | 1.75         | 30.8         | 0.1           |

| Walsh Design Group                     |                         | Page 1   |
|----------------------------------------|-------------------------|----------|
| The Mall, Maryborough Woods            | Residential Development |          |
| Douglas                                | Coolcarron              |          |
| Co. Cork Ireland                       | Fermoy                  | Micco    |
| Date 03/03/2022 08:50                  | Designed by IR          | Desinado |
| File Coolcarron_Model_4.2_DRAINAGE.mdx | Checked by MW           | Diamage  |
| XP Solutions                           | Network 2018.1.1        | 1        |

| PN    | Length<br>(m) | Fall<br>(m) | Slope<br>(1:X) | Area<br>(ha) | Houses | Ba:<br>Flow | se<br>(l/s) | k<br>(mm) | HYD<br>SECT | DIA<br>(mm) | Section Type | Auto<br>Design |
|-------|---------------|-------------|----------------|--------------|--------|-------------|-------------|-----------|-------------|-------------|--------------|----------------|
| 4.001 | 23.164        | 0.154       | 150.4          | 0.000        | 0      |             | 0.0         | 1.500     | 0           | 150         | Pipe/Conduit | 8              |
| 4.002 | 4.946         | 0.033       | 149.9          | 0.000        | 0      |             | 0.0         | 1.500     | 0           | 150         | Pipe/Conduit | ā              |
| 4.003 | 42.227        | 0.211       | 200.1          | 0.000        | 17     |             | 0.0         | 1.500     | 0           | 225         | Pipe/Conduit | Ō              |
| 4.004 | 49.146        | 0.246       | 199.8          | 0.000        | 7      |             | 0.0         | 1.500     | 0           | 225         | Pipe/Conduit | ā              |
| 1.007 | 69.466        | 0.347       | 200.2          | 0.000        | 6      |             | 0.0         | 1.500     | 0           | 225         | Pipe/Conduit | ۵              |
| 6.000 | 91.540        | 0.610       | 150.1          | 0.000        | 15     |             | 0.0         | 1.500     | 0           | 150         | Pipe/Conduit | 8              |
| 1.008 | 16.957        | 0.085       | 199.5          | 0.000        | 0      |             | 0.0         | 1.500     | 0           | 225         | Pipe/Conduit | <b>H</b>       |
| 1.009 | 3.316         | 0.017       | 195.1          | 0.000        | 0      |             | 0.0         | 1.500     | 0           | 225         | Pipe/Conduit | Ă              |
| 1.010 | 42.844        | 0.214       | 200.2          | 0.000        | 5      |             | 0.0         | 1.500     | 0           | 225         | Pipe/Conduit | ð              |
| 7.000 | 76.319        | 0.847       | 90.1           | 0.000        | 10     |             | 0.0         | 1.500     | 0           | 150         | Pipe/Conduit | 8              |
| 7.001 | 23.237        | 0.155       | 149.9          | 0.000        | 4      |             | 0.0         | 1.500     | 0           | 150         | Pipe/Conduit | 8              |
| 7.002 | 23.652        | 0.158       | 149.7          | 0.000        | 3      |             | 0.0         | 1.500     | 0           | 150         | Pipe/Conduit | 8              |
| 8.000 | 29.743        | 0.496       | 60.0           | 0.000        | 4      |             | 0.0         | 1.500     | 0           | 150         | Pipe/Conduit | •              |
| 7.003 | 7.215         | 0.036       | 200.4          | 0.000        | 0      |             | 0.0         | 1.500     | 0           | 225         | Pipe/Conduit | 8              |
| 7.004 | 35.287        | 0.176       | 200.5          | 0.000        | 4      |             | 0.0         | 1.500     | 0           | 225         | Pipe/Conduit | ā              |
| 7.005 | 67.191        | 0.336       | 200.0          | 0.000        | 4      |             | 0.0         | 1.500     | 0           | 225         | Pipe/Conduit | ē              |
| 7.006 | 3.427         | 0.017       | 201.6          | 0.000        | 0      |             | 0.0         | 1.500     | 0           | 225         | Pipe/Conduit | 8              |
| 7.007 | 14.135        | 0.071       | 199.1          | 0.000        | 1      |             | 0.0         | 1.500     | 0           | 225         | Pipe/Conduit | ē              |
| 1.011 | 30.832        | 0.154       | 200.2          | 0.000        | 0      |             | 0.0         | 1.500     | 0           | 225         | Pipe/Conduit | Ô              |
| 9.000 | 48.343        | 0.806       | 60.0           | 0.000        | 1      |             | 0.0         | 1.500     | 0           | 150         | Pipe/Conduit | 8              |

#### Network Results Table

| PN    | US/IL  | Σ Area | $\Sigma$ Base | $\Sigma$ Hse | Add Flow | P.Dep | P.Vel | Vel   | Cap   | Flow  |
|-------|--------|--------|---------------|--------------|----------|-------|-------|-------|-------|-------|
|       | (m)    | (ha)   | Flow (l/s)    |              | (1/s)    | (mm)  | (m/s) | (m/s) | (l/s) | (1/s) |
| 4.001 | 52.374 | 0.000  | 0.0           | 14           | 0.0      | 17    | 0.30  | 0.71  | 12.6  | 0.3   |
| 4.002 | 51.950 | 0.000  | 0.0           | 14           | 0.0      | 17    | 0.30  | 0.71  | 12.6  | 0.3   |
| 4.003 | 51.917 | 0.000  | 0.0           | 31           | 0.1      | 23    | 0.33  | 0.81  | 32.2  | 0.7   |
| 4.004 | 51.706 | 0.000  | 0.0           | 38           | 0.1      | 26    | 0.35  | 0.81  | 32.2  | 0.9   |
| 1.007 | 51.074 | 0.000  | 0.0           | 77           | 0.2      | 36    | 0.43  | 0.81  | 32.2  | 1.8   |
| 6.000 | 51.550 | 0.000  | 0.0           | 15           | 0.0      | 17    | 0.30  | 0.71  | 12.6  | 0.3   |
| 1.008 | 50.727 | 0.000  | 0.0           | 92           | 0.2      | 39    | 0.46  | 0.81  | 32.3  | 2.1   |
| 1.009 | 50.642 | 0.000  | 0.0           | 92           | 0.2      | 39    | 0.46  | 0.82  | 32.6  | 2.1   |
| 1.010 | 50.625 | 0.000  | 0.0           | 97           | 0.2      | 40    | 0.46  | 0.81  | 32.2  | 2.3   |
| 7.000 | 52.268 | 0.000  | 0.0           | 10           | 0.0      | 13    | 0.32  | 0.92  | 16.3  | 0.2   |
| 7.001 | 51.421 | 0.000  | 0.0           | 14           | 0.0      | 17    | 0.30  | 0.71  | 12.6  | 0.3   |
| 7.002 | 51.266 | 0.000  | 0.0           | 17           | 0.0      | 18    | 0.32  | 0.71  | 12.6  | 0.4   |
| 8.000 | 51.148 | 0.000  | 0.0           | 4            | 0.0      | 8     | 0.27  | 1.13  | 20.0  | 0.1   |
| 7.003 | 50.652 | 0.000  | 0.0           | 21           | 0.0      | 20    | 0.29  | 0.81  | 32.2  | 0.5   |
| 7.004 | 50.616 | 0.000  | 0.0           | 25           | 0.1      | 21    | 0.30  | 0.81  | 32.2  | 0.6   |
| 7.005 | 50.440 | 0.000  | 0.0           | 29           | 0.1      | 23    | 0.32  | 0.81  | 32.2  | 0.7   |
| 7.006 | 50.104 | 0.000  | 0.0           | 29           | 0.1      | 23    | 0.32  | 0.81  | 32.1  | 0.7   |
| 7.007 | 50.087 | 0.000  | 0.0           | 30           | 0.1      | 23    | 0.32  | 0.81  | 32.3  | 0.7   |
| 1.011 | 50.016 | 0.000  | 0.0           | 127          | 0.3      | 46    | 0.50  | 0.81  | 32.2  | 2.9   |
| 9.000 | 51.900 | 0.000  | 0.0           | 1            | 0.0      | 4     | 0.17  | 1.13  | 20.0  | 0.0   |

©1982-2018 Innovyze

| Walsh Design Group                     |                         | Page 2   |
|----------------------------------------|-------------------------|----------|
| The Mall, Maryborough Woods            | Residential Development |          |
| Douglas                                | Coolcarron              |          |
| Co. Cork Ireland                       | Fermoy                  | Mirro    |
| Date 03/03/2022 08:50                  | Designed by IR          | Desinado |
| File Coolcarron_Model_4.2_DRAINAGE.mdx | Checked by MW           | Diamaye  |
| XP Solutions                           | Network 2018.1.1        | ·        |

| PN               | Length           | Fall           | Slope          | Area  | Houses  | Ba   | ase        | k              | HYD    | DIA        | Section Type                 | Auto   |
|------------------|------------------|----------------|----------------|-------|---------|------|------------|----------------|--------|------------|------------------------------|--------|
|                  | (m)              | (m)            | (1:X)          | (ha)  |         | Flow | (l/s)      | (mm)           | SECT   | (mm)       |                              | Design |
|                  |                  |                |                |       |         |      |            |                |        |            |                              | _      |
| 1.012            | 82.981<br>38.521 | 0.415          | 200.0<br>199.6 | 0.000 | 9       |      | 0.0        | 1.500          | 0      | 225<br>225 | Pipe/Conduit<br>Pipe/Conduit | Ë      |
| 10.000           | 75.479           | 1.258          | 60.0           | 0.000 | 7       |      | 0.0        | 1.500          | 0      | 150        | Pipe/Conduit                 | 8      |
| 11.000           | 20.287           | 0.790          | 25.7           | 0.000 | 3       |      | 0.0        | 1.500          | 0      | 150        | Pipe/Conduit                 | 8      |
| 10.001           | 45.839           | 0.306          | 149.8          | 0.000 | 8       |      | 0.0        | 1.500          | 0      | 150        | Pipe/Conduit                 | 0      |
| 12.000           | 16.572           | 0.696          | 23.8           | 0.000 | 2       |      | 0.0        | 1.500          | 0      | 150        | Pipe/Conduit                 | 8      |
| 10.002           | 24.945           | 0.125          | 199.6          | 0.000 | 5       |      | 0.0        | 1.500          | 0      | 225        | Pipe/Conduit                 | •      |
| 13.000           | 87.152           | 0.581          | 150.0          | 0.000 | 17      |      | 0.0        | 1.500          | 0      | 150        | Pipe/Conduit                 | 8      |
| 10.003<br>10.004 | 20.791<br>65.189 | 0.104<br>0.326 | 199.9<br>200.0 | 0.000 | 0<br>6  |      | 0.0<br>0.0 | 1.500<br>1.500 | 0<br>0 | 225<br>225 | Pipe/Conduit<br>Pipe/Conduit | 8      |
| 14.000<br>14.001 | 52.998<br>58.497 | 0.353<br>0.390 | 150.1<br>150.0 | 0.000 | 13<br>6 |      | 0.0        | 1.500<br>1.500 | 0      | 150<br>150 | Pipe/Conduit<br>Pipe/Conduit | 8      |
| 10.005           | 44.390           | 0.222          | 200.0          | 0.000 | 14      |      | 0.0        | 1.500          | 0      | 225        | -<br>Pipe/Conduit            | 0      |
| 1.014<br>1.015   | 6.095<br>42.065  | 0.030<br>0.210 | 203.2<br>200.3 | 0.000 | 0<br>4  |      | 0.0        | 1.500<br>1.500 | 0      | 225<br>225 | Pipe/Conduit<br>Pipe/Conduit | 8      |
| 1.016            | 19.383           | 0.097          | 199.8          | 0.000 | 4       |      | 0.0        | 1.500          | 0      | 225        | Pipe/Conduit                 | ŏ      |

| PN     | US/IL  | $\Sigma$ Area | Σ Base     | Σ Hse | Add Flow | P.Dep | P.Vel | Vel   | Cap   | Flow  |
|--------|--------|---------------|------------|-------|----------|-------|-------|-------|-------|-------|
|        | (m)    | (ha)          | Flow (l/s) |       | (l/s)    | (mm)  | (m/s) | (m/s) | (l/s) | (l/s) |
|        |        |               |            |       |          |       |       |       |       |       |
| 1.012  | 49.862 | 0.000         | 0.0        | 137   | 0.3      | 48    | 0.51  | 0.81  | 32.2  | 3.2   |
| 1.013  | 49.447 | 0.000         | 0.0        | 137   | 0.3      | 48    | 0.52  | 0.81  | 32.2  | 3.2   |
| 10.000 | 52.968 | 0.000         | 0.0        | 7     | 0.0      | 10    | 0.32  | 1.13  | 20.0  | 0.2   |
| 11.000 | 52.500 | 0.000         | 0.0        | 3     | 0.0      | 6     | 0.33  | 1.73  | 30.6  | 0.1   |
| 10.001 | 51.710 | 0.000         | 0.0        | 18    | 0.0      | 19    | 0.32  | 0.71  | 12.6  | 0.4   |
| 12.000 | 52.100 | 0.000         | 0.0        | 2     | 0.0      | 5     | 0.29  | 1.80  | 31.8  | 0.0   |
| 10.002 | 51.404 | 0.000         | 0.0        | 25    | 0.1      | 21    | 0.31  | 0.81  | 32.2  | 0.6   |
| 13.000 | 52.212 | 0.000         | 0.0        | 17    | 0.0      | 18    | 0.32  | 0.71  | 12.6  | 0.4   |
| 10.003 | 51.279 | 0.000         | 0.0        | 42    | 0.1      | 27    | 0.36  | 0.81  | 32.2  | 1.0   |
| 10.004 | 51.175 | 0.000         | 0.0        | 48    | 0.1      | 29    | 0.37  | 0.81  | 32.2  | 1.1   |
| 14.000 | 51.893 | 0.000         | 0.0        | 13    | 0.0      | 16    | 0.29  | 0.71  | 12.6  | 0.3   |
| 14.001 | 51.540 | 0.000         | 0.0        | 19    | 0.0      | 19    | 0.33  | 0.71  | 12.6  | 0.4   |
| 10.005 | 50.849 | 0.000         | 0.0        | 81    | 0.2      | 37    | 0.44  | 0.81  | 32.2  | 1.9   |
| 1.014  | 49.254 | 0.000         | 0.0        | 218   | 0.5      | 61    | 0.59  | 0.80  | 32.0  | 5.1   |
| 1.015  | 49.224 | 0.000         | 0.0        | 222   | 0.5      | 61    | 0.59  | 0.81  | 32.2  | 5.2   |
| 1.016  | 49.014 | 0.000         | 0.0        | 226   | 0.5      | 61    | 0.60  | 0.81  | 32.2  | 5.2   |

| Walsh Design Group                     |                         | Page 3   |
|----------------------------------------|-------------------------|----------|
| The Mall, Maryborough Woods            | Residential Development |          |
| Douglas                                | Coolcarron              |          |
| Co. Cork Ireland                       | Fermoy                  | Mirro    |
| Date 03/03/2022 08:50                  | Designed by IR          | Desinado |
| File Coolcarron_Model_4.2_DRAINAGE.mdx | Checked by MW           | Diamaye  |
| XP Solutions                           | Network 2018.1.1        |          |

| PN Length Fall Slope Area Houses   | Base          | k HYD DIA     | Section Type Auto |
|------------------------------------|---------------|---------------|-------------------|
| (m) (m) (1:X) (ha)                 | Flow (l/s) (m | mm) SECT (mm) | Design            |
| 15.000 21.249 0.354 60.0 0.000 8   | 0.0 1.        | .500 o 150    | Pipe/Conduit 🔒    |
| 15.001 7.259 0.121 60.0 0.000 4    | 0.0 1.        | .500 o 150    | Pipe/Conduit      |
| 15.002 13.242 0.088 150.5 0.000 2  | 0.0 1.        | .500 o 150    | Pipe/Conduit      |
| 16.000 25.750 0.455 56.6 0.000 4   | 0.0 1.        | .500 o 150    | Pipe/Conduit 🍵    |
| 15.003 29.045 0.145 200.3 0.000 2  | 0.0 1.        | .500 o 225    | Pipe/Conduit 🔒    |
| 17.000 43.313 0.435 99.6 0.000 18  | 0.0 1.        | .500 o 150    | Pipe/Conduit      |
| 15.004 12.897 0.064 201.5 0.000 0  | 0.0 1.        | .500 o 225    | Pipe/Conduit      |
| 15.005 6.189 0.031 199.6 0.000 0   | 0.0 1.        | .500 o 225    | Pipe/Conduit      |
| 15.006 49.144 0.246 199.8 0.000 5  | 0.0 1.        | .500 o 225    | Pipe/Conduit      |
| 18.000 62.730 1.046 60.0 0.000 8   | 0.0 1.        | .500 o 150    | Pipe/Conduit 🔒    |
| 15.007 65.148 0.326 199.8 0.000 6  | 0.0 1.        | .500 o 225    | Pipe/Conduit 🍵    |
| 19.000 21.195 0.430 49.3 0.000 4   | 0.0 1.        | .500 o 150    | Pipe/Conduit      |
| 19.001 9.075 0.104 87.3 0.000 1    | 0.0 1.        | .500 o 150    | Pipe/Conduit      |
| 20.000 24.858 0.414 60.0 0.000 3   | 0.0 1.        | .500 o 150    | Pipe/Conduit 🔒    |
| 19.002 74.204 0.371 200.0 0.000 12 | 0.0 1.        | .500 o 225    | Pipe/Conduit 🔒    |
| 15.008 12.196 0.061 199.9 0.000 1  | 0.0 1.        | .500 o 225    | Pipe/Conduit      |
| 15.009 64.742 0.324 199.8 0.000 2  | 0.0 1.        | .500 o 225    | Pipe/Conduit      |

| PN     | US/IL  | $\Sigma$ Area | ΣΕ   | Base  | Σ Hse | Add Flow | P.Dep | P.Vel | Vel   | Cap   | Flow  |
|--------|--------|---------------|------|-------|-------|----------|-------|-------|-------|-------|-------|
|        | (m)    | (ha)          | Flow | (l/s) |       | (1/s)    | (mm)  | (m/s) | (m/s) | (1/s) | (1/s) |
| 15.000 | 51.323 | 0.000         |      | 0.0   | 8     | 0.0      | 11    | 0.34  | 1.13  | 20.0  | 0.2   |
| 15.001 | 50.969 | 0.000         |      | 0.0   | 12    | 0.0      | 13    | 0.39  | 1.13  | 20.0  | 0.3   |
| 15.002 | 50.848 | 0.000         |      | 0.0   | 14    | 0.0      | 17    | 0.30  | 0.71  | 12.6  | 0.3   |
| 16.000 | 51.215 | 0.000         |      | 0.0   | 4     | 0.0      | 8     | 0.28  | 1.17  | 20.6  | 0.1   |
| 15.003 | 50.760 | 0.000         |      | 0.0   | 20    | 0.0      | 19    | 0.28  | 0.81  | 32.2  | 0.5   |
| 17.000 | 51.050 | 0.000         |      | 0.0   | 18    | 0.0      | 17    | 0.37  | 0.88  | 15.5  | 0.4   |
| 15.004 | 50.615 | 0.000         |      | 0.0   | 38    | 0.1      | 26    | 0.35  | 0.81  | 32.1  | 0.9   |
| 15.005 | 50.551 | 0.000         |      | 0.0   | 38    | 0.1      | 26    | 0.35  | 0.81  | 32.2  | 0.9   |
| 15.006 | 50.520 | 0.000         |      | 0.0   | 43    | 0.1      | 27    | 0.36  | 0.81  | 32.2  | 1.0   |
| 18.000 | 51.112 | 0.000         |      | 0.0   | 8     | 0.0      | 11    | 0.34  | 1.13  | 20.0  | 0.2   |
| 15.007 | 50.066 | 0.000         |      | 0.0   | 57    | 0.1      | 31    | 0.39  | 0.81  | 32.2  | 1.3   |
| 19.000 | 51.182 | 0.000         |      | 0.0   | 4     | 0.0      | 7     | 0.29  | 1.25  | 22.1  | 0.1   |
| 19.001 | 50.752 | 0.000         |      | 0.0   | 5     | 0.0      | 9     | 0.26  | 0.94  | 16.6  | 0.1   |
| 20.000 | 51.392 | 0.000         |      | 0.0   | 3     | 0.0      | 7     | 0.24  | 1.13  | 20.0  | 0.1   |
| 19.002 | 50.648 | 0.000         |      | 0.0   | 20    | 0.0      | 19    | 0.28  | 0.81  | 32.2  | 0.5   |
| 15.008 | 49.740 | 0.000         |      | 0.0   | 78    | 0.2      | 36    | 0.43  | 0.81  | 32.2  | 1.8   |
| 15.009 | 49.679 | 0.000         |      | 0.0   | 80    | 0.2      | 37    | 0.44  | 0.81  | 32.2  | 1.9   |

| Walsh Design Group                     |                         | Page 4   |
|----------------------------------------|-------------------------|----------|
| The Mall, Maryborough Woods            | Residential Development |          |
| Douglas                                | Coolcarron              |          |
| Co. Cork Ireland                       | Fermoy                  | Mirro    |
| Date 03/03/2022 08:50                  | Designed by IR          | Desinado |
| File Coolcarron_Model_4.2_DRAINAGE.mdx | Checked by MW           | Diamaye  |
| XP Solutions                           | Network 2018.1.1        | •        |

| PN     | Length<br>(m) | Fall<br>(m) | Slope<br>(1:X) | Area<br>(ha) | Houses | Ba<br>Flow | ase<br>(1/s) | k<br>(mm) | HYD<br>SECT | DIA<br>(mm) | Section Type | Auto<br>Design |
|--------|---------------|-------------|----------------|--------------|--------|------------|--------------|-----------|-------------|-------------|--------------|----------------|
| 21.000 | 42.272        | 0.282       | 149.9          | 0.000        | 16     |            | 0.0          | 1.500     | 0           | 150         | Pipe/Conduit | A              |
| 21.001 | 6.258         | 0.042       | 149.0          | 0.000        | 0      |            | 0.0          | 1.500     | 0           | 150         | Pipe/Conduit | Ā              |
| 21.002 | 17.938        | 0.120       | 149.5          | 0.000        | 0      |            | 0.0          | 1.500     | 0           | 150         | Pipe/Conduit | ē              |
| 22.000 | 35.829        | 0.597       | 60.0           | 0.000        | 4      |            | 0.0          | 1.500     | 0           | 150         | Pipe/Conduit | 0              |
| 21.003 | 86.018        | 0.430       | 200.0          | 0.000        | 10     |            | 0.0          | 1.500     | 0           | 225         | Pipe/Conduit | 8              |
| 1.017  | 11.789        | 0.059       | 199.8          | 0.000        | 0      |            | 0.0          | 1.500     | 0           | 225         | Pipe/Conduit | 8              |

| PN     | US/IL<br>(m) | Σ Area<br>(ha) | Σ Base<br>Flow (l/s) | Σ Hse | Add Flow<br>(l/s) | P.Dep<br>(mm) | P.Vel<br>(m/s) | Vel<br>(m/s) | Cap<br>(1/s) | Flow<br>(1/s) |
|--------|--------------|----------------|----------------------|-------|-------------------|---------------|----------------|--------------|--------------|---------------|
| 21.000 | 52.081       | 0.000          | 0.0                  | 16    | 0.0               | 18            | 0.31           | 0.71         | 12.6         | 0.4           |
| 21.001 | 51.799       | 0.000          | 0.0                  | 16    | 0.0               | 18            | 0.31           | 0.72         | 12.7         | 0.4           |
| 21.002 | 51.757       | 0.000          | 0.0                  | 16    | 0.0               | 18            | 0.31           | 0.72         | 12.6         | 0.4           |
| 22.000 | 51.405       | 0.000          | 0.0                  | 4     | 0.0               | 8             | 0.27           | 1.13         | 20.0         | 0.1           |
| 21.003 | 50.808       | 0.000          | 0.0                  | 30    | 0.1               | 23            | 0.32           | 0.81         | 32.2         | 0.7           |
| 1.017  | 48.917       | 0.000          | 0.0                  | 336   | 0.7               | 75            | 0.67           | 0.81         | 32.2         | 7.8           |

| Walsh Design Group                     |                         |          |  |  |  |
|----------------------------------------|-------------------------|----------|--|--|--|
| The Mall, Maryborough Woods            | Residential Development |          |  |  |  |
| Douglas                                | Coolcarron              |          |  |  |  |
| Co. Cork Ireland                       | Fermoy                  | Mirro    |  |  |  |
| Date 03/03/2022 08:50                  | Designed by IR          | Dcainago |  |  |  |
| File Coolcarron_Model_4.2_DRAINAGE.mdx | Checked by MW           | Diamaye  |  |  |  |
| XP Solutions                           | Network 2018.1.1        |          |  |  |  |

| Manhole | Schedules | for | Foul | Network | 1 |
|---------|-----------|-----|------|---------|---|
|---------|-----------|-----|------|---------|---|

| MH<br>Name | MH<br>CL (m) | MH<br>Depth | MH<br>Connection | MH<br>Diam.,L*W | PN     | Pipe Out<br>Invert | Diameter | PN     | Pipes In<br>Invert | Diameter | Backdrop |
|------------|--------------|-------------|------------------|-----------------|--------|--------------------|----------|--------|--------------------|----------|----------|
|            |              | (m)         |                  | (mm)            |        | Level (m)          | (mm)     |        | Level (m)          | (mm)     | (mm)     |
| F1         | 55.656       | 1.550       | Open Manhole     | 1200            | 1.000  | 54.106             | 150      |        |                    |          |          |
| F2         | 55.018       | 1.590       | Open Manhole     | 1200            | 1.001  | 53.428             | 150      | 1.000  | 53.428             | 150      |          |
| F3         | 54.600       | 1.550       | Open Manhole     | 1200            | 2.000  | 53.050             | 150      |        |                    |          |          |
| F4         | 54.167       | 1.550       | Open Manhole     | 1200            | 3.000  | 52.617             | 150      |        |                    |          |          |
| F5         | 54.148       | 1.794       | Open Manhole     | 1200            | 2.001  | 52.354             | 150      | 2.000  | 52.571             | 150      | 217      |
|            |              |             |                  |                 |        |                    |          | 3.000  | 52.354             | 150      |          |
| F6         | 54.243       | 2.346       | Open Manhole     | 1200            | 1.002  | 51.897             | 225      | 1.001  | 52.617             | 150      | 645      |
|            |              |             |                  |                 |        |                    |          | 2.001  | 51.897             | 150      |          |
| F7         | 53.980       | 2.387       | Open Manhole     | 1200            | 1.003  | 51.593             | 225      | 1.002  | 51.593             | 225      |          |
| F8         | 53.897       | 2.348       | Open Manhole     | 1200            | 1.004  | 51.549             | 225      | 1.003  | 51.549             | 225      |          |
| F9         | 53.518       | 2.320       | Open Manhole     | 1200            | 1.005  | 51.198             | 225      | 1.004  | 51.198             | 225      |          |
| F10        | 53.486       | 2.319       | Open Manhole     | 1200            | 1.006  | 51.167             | 225      | 1.005  | 51.167             | 225      |          |
| F11        | 54.993       | 1.587       | Open Manhole     | 1200            | 4.000  | 53.406             | 150      |        |                    |          |          |
| F12        | 55.234       | 1.550       | Open Manhole     | 1200            | 5.000  | 53.684             | 150      |        |                    |          |          |
| F13        | 54.229       | 1.855       | Open Manhole     | 1200            | 4.001  | 52.374             | 150      | 4.000  | 52.374             | 150      |          |
|            |              |             |                  |                 |        |                    |          | 5.000  | 52.679             | 150      | 305      |
| F14        | 53.973       | 2.023       | Open Manhole     | 1200            | 4.002  | 51.950             | 150      | 4.001  | 52.220             | 150      | 270      |
| F15        | 53.994       | 2.077       | Open Manhole     | 1200            | 4.003  | 51.917             | 225      | 4.002  | 51.917             | 150      |          |
| F16        | 54.042       | 2.336       | Open Manhole     | 1200            | 4.004  | 51.706             | 225      | 4.003  | 51.706             | 225      |          |
| F17        | 53.496       | 2.422       | Open Manhole     | 1200            | 1.007  | 51.074             | 225      | 1.006  | 51.074             | 225      |          |
|            |              |             |                  |                 |        |                    |          | 4.004  | 51.460             | 225      | 386      |
| F18        | 53.149       | 1.599       | Open Manhole     | 1200            | 6.000  | 51.550             | 150      |        |                    |          |          |
| F19        | 53.363       | 2.636       | Open Manhole     | 1200            | 1.008  | 50.727             | 225      | 1.007  | 50.727             | 225      |          |
|            |              |             |                  |                 |        |                    |          | 6.000  | 50.940             | 150      | 138      |
| F20        | 53.141       | 2.499       | Open Manhole     | 1200            | 1.009  | 50.642             | 225      | 1.008  | 50.642             | 225      |          |
| F21        | 53.109       | 2.484       | Open Manhole     | 1200            | 1.010  | 50.625             | 225      | 1.009  | 50.625             | 225      |          |
| F22        | 53.818       | 1.550       | Open Manhole     | 1200            | 7.000  | 52.268             | 150      |        |                    |          |          |
| F23        | 52.971       | 1.550       | Open Manhole     | 1200            | 7.001  | 51.421             | 150      | 7.000  | 51.421             | 150      |          |
| F24        | 52.880       | 1.614       | Open Manhole     | 1200            | 7.002  | 51.266             | 150      | 7.001  | 51.266             | 150      |          |
| F25        | 52.698       | 1.550       | Open Manhole     | 1200            | 8.000  | 51.148             | 150      |        |                    |          |          |
| F26        | 52.874       | 2.222       | Open Manhole     | 1200            | 7.003  | 50.652             | 225      | 7.002  | 51.108             | 150      | 381      |
|            |              |             |                  |                 |        |                    |          | 8.000  | 50.652             | 150      |          |
| F27        | 52.806       | 2.190       | Open Manhole     | 1200            | 7.004  | 50.616             | 225      | 7.003  | 50.616             | 225      |          |
| F28        | 52.702       | 2.262       | Open Manhole     | 1200            | 7.005  | 50.440             | 225      | 7.004  | 50.440             | 225      |          |
| F29        | 52.740       | 2.636       | Open Manhole     | 1200            | 7.006  | 50.104             | 225      | 7.005  | 50.104             | 225      |          |
| F30        | 52.743       | 2.656       | Open Manhole     | 1200            | 7.007  | 50.087             | 225      | 7.006  | 50.087             | 225      |          |
| F31        | 52.765       | 2.749       | Open Manhole     | 1200            | 1.011  | 50.016             | 225      | 1.010  | 50.411             | 225      | 395      |
|            |              |             |                  |                 |        |                    |          | 7.007  | 50.016             | 225      |          |
| F32        | 53.450       | 1.550       | Open Manhole     | 1200            | 9.000  | 51.900             | 150      |        |                    |          |          |
| F33        | 53.372       | 3.510       | Open Manhole     | 1200            | 1.012  | 49.862             | 225      | 1.011  | 49.862             | 225      |          |
|            |              |             |                  |                 |        |                    |          | 9.000  | 51.094             | 150      | 1157     |
| F34        | 52.961       | 3.514       | Open Manhole     | 1200            | 1.013  | 49.447             | 225      | 1.012  | 49.447             | 225      |          |
| F35        | 54.518       | 1.550       | Open Manhole     | 1200            | 10.000 | 52.968             | 150      |        |                    |          |          |
| F36        | 54.050       | 1.550       | Open Manhole     | 1200            | 11.000 | 52.500             | 150      |        |                    |          |          |
| F37        | 53.874       | 2.164       | Open Manhole     | 1200            | 10.001 | 51.710             | 150      | 10.000 | 51.710             | 150      |          |
|            |              |             |                  |                 |        |                    |          | 11.000 | 51.710             | 150      |          |

| Walsh Design Group                     |                         | Page 6   |
|----------------------------------------|-------------------------|----------|
| The Mall, Maryborough Woods            | Residential Development |          |
| Douglas                                | Coolcarron              |          |
| Co. Cork Ireland                       | Fermoy                  | Micro    |
| Date 03/03/2022 08:50                  | Designed by IR          | Desinado |
| File Coolcarron_Model_4.2_DRAINAGE.mdx | Checked by MW           | Diamaye  |
| XP Solutions                           | Network 2018.1.1        |          |

| Manhole | Schedules | for | Foul | Network | 1 |
|---------|-----------|-----|------|---------|---|
|---------|-----------|-----|------|---------|---|

| MH<br>Name  | MH<br>CL (m) | MH<br>Depth<br>(m) | MH<br>Connection | MH<br>Diam.,L*W<br>(mm) | PN     | Pipe Out<br>Invert<br>Level (m) | Diameter<br>(mm) | PN     | Pipes In<br>Invert<br>Level (m) | Diameter<br>(mm) | Backdrop<br>(mm) |
|-------------|--------------|--------------------|------------------|-------------------------|--------|---------------------------------|------------------|--------|---------------------------------|------------------|------------------|
| E 2 0       | E2 7E0       | 1 650              | Open Marhele     | 1200                    | 12 000 | E2 100                          | 150              |        |                                 |                  |                  |
| E 20        | 53.750       | 2 475              | Open Manhole     | 1200                    | 10 002 | 52.100<br>E1 404                | 100              | 10 001 | E1 404                          | 1 5 0            |                  |
| гзэ         | 53.079       | 2.475              | Open Mainore     | 1200                    | 10.002 | 51.404                          | 225              | 12 000 | 51.404                          | 150              |                  |
| E40         | E2 762       | 1 660              | Open Marhele     | 1200                    | 12 000 | E2 212                          | 1 5 0            | 12.000 | 51.404                          | 190              |                  |
| F40<br>E41  | 53.702       | 2 692              | Open Manhole     | 1200                    | 10 002 | 52.212                          | 100              | 10 002 | F1 270                          | 225              |                  |
| LAT         | 55.901       | 2.002              | Open Mannore     | 1200                    | 10.003 | 51.279                          | 223              | 12 000 | 51 621                          | 150              | 277              |
| F42         | 53 883       | 2 708              | Open Manhole     | 1200                    | 10 004 | 51 175                          | 225              | 10 003 | 51 175                          | 225              | 211              |
| F43         | 53 443       | 1 550              | Open Manhole     | 1200                    | 14 000 | 51 893                          | 150              | 10.005 | 51.175                          | 223              |                  |
| F44         | 53 324       | 1 784              | Open Manhole     | 1200                    | 14 001 | 51 540                          | 150              | 14 000 | 51 540                          | 150              |                  |
| F45         | 53.324       | 2 474              | Open Manhole     | 1200                    | 10 005 | 50 849                          | 225              | 10 004 | 50 849                          | 225              |                  |
| 1 15        | 55.525       | 2.1/1              | open namore      | 1200                    | 10.005 | 50.015                          | 225              | 14 001 | 51 150                          | 150              | 226              |
| F46         | 52 922       | 3 668              | Open Manhole     | 1200                    | 1 014  | 49 254                          | 225              | 1 013  | 49 254                          | 225              | 220              |
| 1 10        | 52.522       | 3.000              | open namore      | 1200                    | 1.011  | 19.251                          | 225              | 10 005 | 50 627                          | 225              | 1373             |
| F47         | 53 000       | 3 776              | Open Manhole     | 1200                    | 1 015  | 49 224                          | 225              | 1 014  | 49 224                          | 225              | 1373             |
| F48         | 53 250       | 4 236              | Open Manhole     | 1200                    | 1 016  | 49 014                          | 225              | 1 015  | 49 014                          | 225              |                  |
| F10         | 52 873       | 1.250              | Open Manhole     | 1200                    | 15 000 | 51 323                          | 150              | 1.015  | 19.011                          | 225              |                  |
| F50         | 52.073       | 1 770              | Open Manhole     | 1200                    | 15 001 | 50 969                          | 150              | 15 000 | 50 969                          | 150              |                  |
| F50         | 52.755       | 1 854              | Open Manhole     | 1200                    | 15 002 | 50.909                          | 150              | 15 001 | 50.909                          | 150              |                  |
| F52         | 52.765       | 1 550              | Open Manhole     | 1200                    | 16 000 | 51 215                          | 150              | 13.001 | 50.010                          | 150              |                  |
| F53         | 52 699       | 1 939              | Open Manhole     | 1200                    | 15 003 | 50 760                          | 225              | 15 002 | 50 760                          | 150              |                  |
| 155         | 52.055       | 1.555              | open namore      | 1200                    | 15.005 | 30.700                          | 225              | 16 000 | 50.760                          | 150              |                  |
| F54         | 52 652       | 1 602              | Open Manhole     | 1200                    | 17 000 | 51 050                          | 150              | 10.000 | 50.700                          | 150              |                  |
| F55         | 52.052       | 2 085              | Open Manhole     | 1200                    | 15 004 | 50 615                          | 225              | 15 003 | 50 615                          | 225              |                  |
| 155         | 52.700       | 2.005              | open namore      | 1200                    | 15.001 | 50.015                          | 225              | 17 000 | 50.615                          | 150              |                  |
| <b>F</b> 56 | 52 604       | 2 053              | Open Manhole     | 1200                    | 15 005 | 50 551                          | 225              | 15 004 | 50.015                          | 225              |                  |
| F57         | 52 598       | 2.033              | Open Manhole     | 1200                    | 15 006 | 50.551                          | 225              | 15 005 | 50.551                          | 225              |                  |
| F58         | 52 662       | 1 550              | Open Manhole     | 1200                    | 18 000 | 51 112                          | 150              | 15.005 | 50.520                          | 225              |                  |
| F59         | 52.664       | 2.598              | Open Manhole     | 1200                    | 15.007 | 50.066                          | 225              | 15,006 | 50.274                          | 225              | 208              |
| 100         | 521001       | 2.000              | open namere      | 1200                    | 10.007 | 501000                          | 220              | 18,000 | 50.066                          | 150              | 200              |
| F60         | 52.732       | 1.550              | Open Manhole     | 1200                    | 19,000 | 51,182                          | 150              | 10.000 | 50.000                          | 100              |                  |
| F61         | 52 857       | 2 105              | Open Manhole     | 1200                    | 19 001 | 50 752                          | 150              | 19 000 | 50 752                          | 150              |                  |
| F62         | 52.942       | 1.550              | Open Manhole     | 1200                    | 20.000 | 51.392                          | 150              | 19.000 | 50.752                          | 150              |                  |
| F63         | 52.903       | 2.255              | Open Manhole     | 1200                    | 19.002 | 50.648                          | 225              | 19.001 | 50.648                          | 150              |                  |
|             |              |                    |                  |                         |        |                                 |                  | 20.000 | 50.978                          | 150              | 255              |
| F64         | 52.584       | 2.844              | Open Manhole     | 1200                    | 15.008 | 49.740                          | 225              | 15.007 | 49.740                          | 225              |                  |
|             |              |                    |                  |                         |        |                                 |                  | 19.002 | 50.277                          | 225              | 537              |
| F65         | 52.494       | 2.815              | Open Manhole     | 1200                    | 15.009 | 49.679                          | 225              | 15.008 | 49.679                          | 225              |                  |
| F66         | 53.631       | 1.550              | Open Manhole     | 1200                    | 21.000 | 52.081                          | 150              |        |                                 | 0                |                  |
| F67         | 53.450       | 1.651              | Open Manhole     | 1200                    | 21.001 | 51.799                          | 150              | 21.000 | 51.799                          | 150              |                  |
| F68         | 53.431       | 1.674              | Open Manhole     | 1200                    | 21.002 | 51.757                          | 150              | 21.001 | 51.757                          | 150              |                  |
| F69         | 52.955       | 1.550              | Open Manhole     | 1200                    | 22.000 | 51.405                          | 150              |        |                                 | _30              |                  |
| F71         | 53.299       | 2.491              | Open Manhole     | 1200                    | 21.003 | 50.808                          | 225              | 21.002 | 51.637                          | 150              | 754              |
|             |              |                    |                  |                         |        |                                 | 0                | 22.000 | 50.808                          | 150              |                  |
| F72         | 53.226       | 4.309              | Open Manhole     | 1200                    | 1.017  | 48.917                          | 225              | 1.016  | 48.917                          | 225              |                  |
|             |              |                    |                  | 1200                    |        | -0.72/                          | 225              | 15.009 | 49.355                          | 225              | 438              |
|             |              |                    |                  |                         |        |                                 |                  | 21.003 | 50.378                          | 225              | 1461             |
|             |              |                    |                  |                         |        |                                 |                  | 21.003 | 50.570                          | 223              | 1 111            |

| Walsh Design Group                     |                         | Page 7   |
|----------------------------------------|-------------------------|----------|
| The Mall, Maryborough Woods            | Residential Development |          |
| Douglas                                | Coolcarron              |          |
| Co. Cork Ireland                       | Fermoy                  | Mirro    |
| Date 03/03/2022 08:50                  | Designed by IR          | Dcainago |
| File Coolcarron_Model_4.2_DRAINAGE.mdx | Checked by MW           | Diamaye  |
| XP Solutions                           | Network 2018.1.1        | ·        |

| Mainore Schedures for Four Network I |
|--------------------------------------|
|--------------------------------------|

| MH<br>Name | MH<br>CL (m) | MH<br>Depth<br>(m) | MH<br>Connection | MH<br>Diam.,L*W<br>(mm) | PN | Pipe Out<br>Invert<br>Level (m) | Diameter<br>(mm) | PN    | Pipes In<br>Invert<br>Level (m) | Diameter<br>(mm) | Backdrop<br>(mm) |
|------------|--------------|--------------------|------------------|-------------------------|----|---------------------------------|------------------|-------|---------------------------------|------------------|------------------|
| F73        | 53.200       | 4.342              | Open Manhole     | 1200                    |    | OUTFALL                         |                  | 1.017 | 48.858                          | 225              |                  |

| Walsh Design Group                     |                         | Page 8   |
|----------------------------------------|-------------------------|----------|
| The Mall, Maryborough Woods            | Residential Development |          |
| Douglas                                | Coolcarron              |          |
| Co. Cork Ireland                       | Fermoy                  | Mirro    |
| Date 03/03/2022 08:50                  | Designed by IR          | Desinado |
| File Coolcarron_Model_4.2_DRAINAGE.mdx | Checked by MW           | Diamaye  |
| XP Solutions                           | Network 2018.1.1        | •        |

#### Upstream Manhole

| PN    | Hyd<br>Sect | Diam<br>(mm) | MH<br>Name | C.Level<br>(m) | I.Level<br>(m) | D.Depth<br>(m) | MH<br>Connection | MH DIAM., L*W<br>(mm) |
|-------|-------------|--------------|------------|----------------|----------------|----------------|------------------|-----------------------|
| 1.000 | 0           | 150          | F1         | 55.656         | 54.106         | 1.400          | Open Manhole     | 1200                  |
| 1.001 | 0           | 150          | F2         | 55.018         | 53.428         | 1.440          | Open Manhole     | 1200                  |
| 2.000 | 0           | 150          | F3         | 54.600         | 53.050         | 1.400          | Open Manhole     | 1200                  |
| 3.000 | 0           | 150          | F4         | 54.167         | 52.617         | 1.400          | Open Manhole     | 1200                  |
| 2.001 | 0           | 150          | F5         | 54.148         | 52.354         | 1.644          | Open Manhole     | 1200                  |
| 1.002 | 0           | 225          | F6         | 54.243         | 51.897         | 2.121          | Open Manhole     | 1200                  |
| 1.003 | 0           | 225          | F7         | 53.980         | 51.593         | 2.162          | Open Manhole     | 1200                  |
| 1.004 | 0           | 225          | F8         | 53.897         | 51.549         | 2.123          | Open Manhole     | 1200                  |
| 1.005 | 0           | 225          | F9         | 53.518         | 51.198         | 2.095          | Open Manhole     | 1200                  |
| 1.006 | 0           | 225          | F10        | 53.486         | 51.167         | 2.094          | Open Manhole     | 1200                  |
| 4.000 | 0           | 150          | F11        | 54.993         | 53.406         | 1.437          | Open Manhole     | 1200                  |
| 5.000 | 0           | 150          | F12        | 55.234         | 53.684         | 1.400          | Open Manhole     | 1200                  |
| 4.001 | 0           | 150          | F13        | 54.229         | 52.374         | 1.705          | Open Manhole     | 1200                  |
| 4.002 | 0           | 150          | F14        | 53.973         | 51.950         | 1.873          | Open Manhole     | 1200                  |
| 4.003 | 0           | 225          | F15        | 53.994         | 51.917         | 1.852          | Open Manhole     | 1200                  |
| 4.004 | 0           | 225          | F16        | 54.042         | 51.706         | 2.111          | Open Manhole     | 1200                  |
| 1.007 | 0           | 225          | F17        | 53.496         | 51.074         | 2.197          | Open Manhole     | 1200                  |

| PN    | Length | Slope | MH   | C.Level | I.Level | D.Depth | MH           | MH DIAM., L*W |
|-------|--------|-------|------|---------|---------|---------|--------------|---------------|
|       | (m)    | (1:X) | Name | (m)     | (m)     | (m)     | Connection   | (mm)          |
| 1.000 | 32.473 | 47.9  | F2   | 55.018  | 53.428  | 1.440   | Open Manhole | 1200          |
| 1.001 | 41.970 | 51.8  | F6   | 54.243  | 52.617  | 1.476   | Open Manhole | 1200          |
| 2.000 | 28.726 | 60.0  | F5   | 54.148  | 52.571  | 1.427   | Open Manhole | 1200          |
| 3.000 | 15.805 | 60.1  | F5   | 54.148  | 52.354  | 1.644   | Open Manhole | 1200          |
| 2.001 | 27.434 | 60.0  | F6   | 54.243  | 51.897  | 2.196   | Open Manhole | 1200          |
| 1.002 | 60.807 | 200.0 | F7   | 53.980  | 51.593  | 2.162   | Open Manhole | 1200          |
| 1.003 | 8.774  | 199.4 | F8   | 53.897  | 51.549  | 2.123   | Open Manhole | 1200          |
| 1.004 | 70.203 | 200.0 | F9   | 53.518  | 51.198  | 2.095   | Open Manhole | 1200          |
| 1.005 | 6.252  | 201.7 | F10  | 53.486  | 51.167  | 2.094   | Open Manhole | 1200          |
| 1.006 | 18.619 | 200.2 | F17  | 53.496  | 51.074  | 2.197   | Open Manhole | 1200          |
| 4.000 | 51.580 | 50.0  | F13  | 54.229  | 52.374  | 1.705   | Open Manhole | 1200          |
| 5.000 | 25.454 | 25.3  | F13  | 54.229  | 52.679  | 1.400   | Open Manhole | 1200          |
| 4.001 | 23.164 | 150.4 | F14  | 53.973  | 52.220  | 1.603   | Open Manhole | 1200          |
| 4.002 | 4.946  | 149.9 | F15  | 53.994  | 51.917  | 1.927   | Open Manhole | 1200          |
| 4.003 | 42.227 | 200.1 | F16  | 54.042  | 51.706  | 2.111   | Open Manhole | 1200          |
| 4.004 | 49.146 | 199.8 | F17  | 53.496  | 51.460  | 1.811   | Open Manhole | 1200          |
| 1.007 | 69.466 | 200.2 | F19  | 53.363  | 50.727  | 2.411   | Open Manhole | 1200          |

| Walsh Design Group                     |                         |          |  |  |  |  |
|----------------------------------------|-------------------------|----------|--|--|--|--|
| The Mall, Maryborough Woods            | Residential Development |          |  |  |  |  |
| Douglas                                | Coolcarron              |          |  |  |  |  |
| Co. Cork Ireland                       | Fermoy                  | Mirro    |  |  |  |  |
| Date 03/03/2022 08:50                  | Designed by IR          | Dcainago |  |  |  |  |
| File Coolcarron_Model_4.2_DRAINAGE.mdx | Checked by MW           | Diamaye  |  |  |  |  |
| XP Solutions                           | Network 2018.1.1        | •        |  |  |  |  |

#### Upstream Manhole

| PN     | Hyd<br>Sect | Diam<br>(mm) | MH<br>Name | C.Level<br>(m) | I.Level<br>(m) | D.Depth<br>(m) | MH<br>Connection | MH DIAM., L*W<br>(mm) |
|--------|-------------|--------------|------------|----------------|----------------|----------------|------------------|-----------------------|
| 6.000  | 0           | 150          | F18        | 53.149         | 51.550         | 1.449          | Open Manhole     | 1200                  |
| 1.008  | 0           | 225          | F19        | 53.363         | 50.727         | 2.411          | Open Manhole     | 1200                  |
| 1.009  | 0           | 225          | F20        | 53.141         | 50.642         | 2.274          | Open Manhole     | 1200                  |
| 1.010  | 0           | 225          | F21        | 53.109         | 50.625         | 2.259          | Open Manhole     | 1200                  |
| 7.000  | 0           | 150          | F22        | 53.818         | 52.268         | 1.400          | Open Manhole     | 1200                  |
| 7.001  | 0           | 150          | F23        | 52.971         | 51.421         | 1.400          | Open Manhole     | 1200                  |
| 7.002  | 0           | 150          | F24        | 52.880         | 51.266         | 1.464          | Open Manhole     | 1200                  |
| 8.000  | 0           | 150          | F25        | 52.698         | 51.148         | 1.400          | Open Manhole     | 1200                  |
| 7.003  | 0           | 225          | F26        | 52.874         | 50.652         | 1.997          | Open Manhole     | 1200                  |
| 7.004  | 0           | 225          | F27        | 52.806         | 50.616         | 1.965          | Open Manhole     | 1200                  |
| 7.005  | 0           | 225          | F28        | 52.702         | 50.440         | 2.037          | Open Manhole     | 1200                  |
| 7.006  | 0           | 225          | F29        | 52.740         | 50.104         | 2.411          | Open Manhole     | 1200                  |
| 7.007  | 0           | 225          | F30        | 52.743         | 50.087         | 2.431          | Open Manhole     | 1200                  |
| 1.011  | 0           | 225          | F31        | 52.765         | 50.016         | 2.524          | Open Manhole     | 1200                  |
| 9.000  | 0           | 150          | F32        | 53.450         | 51.900         | 1.400          | Open Manhole     | 1200                  |
| 1.012  | 0           | 225          | F33        | 53.372         | 49.862         | 3.285          | Open Manhole     | 1200                  |
| 1.013  | 0           | 225          | F34        | 52.961         | 49.447         | 3.289          | Open Manhole     | 1200                  |
| 10.000 | 0           | 150          | F35        | 54.518         | 52.968         | 1.400          | Open Manhole     | 1200                  |

| PN     | Length | Slope | MH   | C.Level | I.Level | D.Depth | MH           | MH DIAM., L*W |
|--------|--------|-------|------|---------|---------|---------|--------------|---------------|
|        | (m)    | (1:X) | Name | (m)     | (m)     | (m)     | Connection   | (mm)          |
| 6.000  | 91.540 | 150.1 | F19  | 53.363  | 50.940  | 2.273   | Open Manhole | 1200          |
| 1.008  | 16.957 | 199.5 | F20  | 53.141  | 50.642  | 2.274   | Open Manhole | 1200          |
| 1.009  | 3.316  | 195.1 | F21  | 53.109  | 50.625  | 2.259   | Open Manhole | 1200          |
| 1.010  | 42.844 | 200.2 | F31  | 52.765  | 50.411  | 2.129   | Open Manhole | 1200          |
| 7.000  | 76.319 | 90.1  | F23  | 52.971  | 51.421  | 1.400   | Open Manhole | 1200          |
| 7.001  | 23.237 | 149.9 | F24  | 52.880  | 51.266  | 1.464   | Open Manhole | 1200          |
| 7.002  | 23.652 | 149.7 | F26  | 52.874  | 51.108  | 1.616   | Open Manhole | 1200          |
| 8.000  | 29.743 | 60.0  | F26  | 52.874  | 50.652  | 2.072   | Open Manhole | 1200          |
| 7.003  | 7.215  | 200.4 | F27  | 52.806  | 50.616  | 1.965   | Open Manhole | 1200          |
| 7.004  | 35.287 | 200.5 | F28  | 52.702  | 50.440  | 2.037   | Open Manhole | 1200          |
| 7.005  | 67.191 | 200.0 | F29  | 52.740  | 50.104  | 2.411   | Open Manhole | 1200          |
| 7.006  | 3.427  | 201.6 | F30  | 52.743  | 50.087  | 2.431   | Open Manhole | 1200          |
| 7.007  | 14.135 | 199.1 | F31  | 52.765  | 50.016  | 2.524   | Open Manhole | 1200          |
| 1.011  | 30.832 | 200.2 | F33  | 53.372  | 49.862  | 3.285   | Open Manhole | 1200          |
| 9.000  | 48.343 | 60.0  | F33  | 53.372  | 51.094  | 2.128   | Open Manhole | 1200          |
| 1.012  | 82.981 | 200.0 | F34  | 52.961  | 49.447  | 3.289   | Open Manhole | 1200          |
| 1.013  | 38.521 | 199.6 | F46  | 52.922  | 49.254  | 3.443   | Open Manhole | 1200          |
| 10.000 | 75.479 | 60.0  | F37  | 53.874  | 51.710  | 2.014   | Open Manhole | 1200          |

| Walsh Design Group                     |                         |          |  |  |  |  |
|----------------------------------------|-------------------------|----------|--|--|--|--|
| The Mall, Maryborough Woods            | Residential Development |          |  |  |  |  |
| Douglas                                | Coolcarron              |          |  |  |  |  |
| Co. Cork Ireland                       | Fermoy                  | Mirro    |  |  |  |  |
| Date 03/03/2022 08:50                  | Designed by IR          | Dcainago |  |  |  |  |
| File Coolcarron_Model_4.2_DRAINAGE.mdx | Checked by MW           | Diamaye  |  |  |  |  |
| XP Solutions                           | Network 2018.1.1        |          |  |  |  |  |

#### Upstream Manhole

| PN     | Hyd  | Diam | MH   | C.Level | I.Level | D.Depth | MH           | MH DIAM., L*W |
|--------|------|------|------|---------|---------|---------|--------------|---------------|
|        | Sect | (mm) | Name | (m)     | (m)     | (m)     | Connection   | (mm)          |
|        |      |      |      |         |         |         |              |               |
| 11.000 | 0    | 150  | F36  | 54.050  | 52.500  | 1.400   | Open Manhole | 1200          |
| 10.001 | 0    | 150  | F37  | 53.874  | 51.710  | 2.014   | Open Manhole | 1200          |
| 12.000 | 0    | 150  | F38  | 53.750  | 52.100  | 1.500   | Open Manhole | 1200          |
| 10.002 | 0    | 225  | F39  | 53.879  | 51.404  | 2.250   | Open Manhole | 1200          |
| 13.000 | 0    | 150  | F40  | 53.762  | 52.212  | 1.400   | Open Manhole | 1200          |
| 10.003 | 0    | 225  | F41  | 53,961  | 51,279  | 2.457   | Open Manhole | 1200          |
| 10.004 | 0    | 225  | F42  | 53.883  | 51.175  | 2.483   | Open Manhole | 1200          |
|        |      |      |      |         |         |         |              |               |
| 14.000 | 0    | 150  | F43  | 53.443  | 51.893  | 1.400   | Open Manhole | 1200          |
| 14.001 | 0    | 150  | F44  | 53.324  | 51.540  | 1.634   | Open Manhole | 1200          |
| 10.005 | 0    | 225  | F45  | 53.323  | 50.849  | 2.249   | Open Manhole | 1200          |
| 1.014  | 0    | 225  | F46  | 52.922  | 49.254  | 3.443   | Open Manhole | 1200          |
| 1.015  | 0    | 225  | F47  | 53.000  | 49.224  | 3.551   | Open Manhole | 1200          |
| 1.016  | 0    | 225  | F48  | 53.250  | 49.014  | 4.011   | Open Manhole | 1200          |
|        |      |      |      |         |         |         |              |               |
| 15.000 | 0    | 150  | F49  | 52.873  | 51.323  | 1.400   | Open Manhole | 1200          |
| 15.001 | 0    | 150  | F50  | 52.739  | 50.969  | 1.620   | Open Manhole | 1200          |
| 15.002 | 0    | 150  | F51  | 52.702  | 50.848  | 1.704   | Open Manhole | 1200          |

| PN     | Length | Slope | MH   | C.Level | I.Level | D.Depth |           | MH      | MH | DIAM., L*W |
|--------|--------|-------|------|---------|---------|---------|-----------|---------|----|------------|
|        | (m)    | (1:X) | Name | (m)     | (m)     | (m)     | Conr      | nection |    | (mm)       |
|        |        |       |      |         |         |         |           |         |    |            |
| 11.000 | 20.287 | 25.7  | F37  | 53.874  | 51.710  | 2.014   | Open      | Manhole |    | 1200       |
| 10.001 | 45.839 | 149.8 | F39  | 53.879  | 51.404  | 2.325   | Open      | Manhole |    | 1200       |
| 12.000 | 16.572 | 23.8  | F39  | 53.879  | 51.404  | 2.325   | Open      | Manhole |    | 1200       |
| 10.002 | 24.945 | 199.6 | F41  | 53.961  | 51.279  | 2.457   | Open      | Manhole |    | 1200       |
| 13.000 | 87.152 | 150.0 | F41  | 53.961  | 51.631  | 2.180   | Open      | Manhole |    | 1200       |
| 10.003 | 20.791 | 199.9 | F42  | 53.883  | 51.175  | 2.483   | Open      | Manhole |    | 1200       |
| 10.004 | 65.189 | 200.0 | F45  | 53.323  | 50.849  | 2.249   | Open      | Manhole |    | 1200       |
| 14.000 | 52.998 | 150.1 | F44  | 53.324  | 51.540  | 1.634   | Open      | Manhole |    | 1200       |
| 14.001 | 58.497 | 150.0 | F45  | 53.323  | 51.150  | 2.023   | Open      | Manhole |    | 1200       |
| 10.005 | 44.390 | 200.0 | F46  | 52.922  | 50.627  | 2.070   | Open      | Manhole |    | 1200       |
| 1.014  | 6.095  | 203.2 | F47  | 53.000  | 49.224  | 3.551   | Open      | Manhole |    | 1200       |
| 1.015  | 42.065 | 200.3 | F48  | 53.250  | 49.014  | 4.011   | Open      | Manhole |    | 1200       |
| 1.016  | 19.383 | 199.8 | F72  | 53.226  | 48.917  | 4.084   | Open      | Manhole |    | 1200       |
| 15.000 | 21.249 | 60.0  | F50  | 52.739  | 50.969  | 1.620   | Open      | Manhole |    | 1200       |
| 15.001 | 7.259  | 60.0  | F51  | 52.702  | 50.848  | 1.704   | -<br>Open | Manhole |    | 1200       |
| 15.002 | 13.242 | 150.5 | F53  | 52.699  | 50.760  | 1.789   | Open      | Manhole |    | 1200       |

| Walsh Design Group                     | Page 11                 |          |
|----------------------------------------|-------------------------|----------|
| The Mall, Maryborough Woods            | Residential Development |          |
| Douglas                                | Coolcarron              |          |
| Co. Cork Ireland                       | Fermoy                  | Micro    |
| Date 03/03/2022 08:50                  | Designed by IR          | Desinado |
| File Coolcarron_Model_4.2_DRAINAGE.mdx | Checked by MW           | Diamaye  |
| XP Solutions                           | Network 2018.1.1        | •        |

#### Upstream Manhole

| PN     | Hyd  | Diam  | MH           | C.Level | I.Level       | D.Depth | MH                | MH DIAM., L*W |
|--------|------|-------|--------------|---------|---------------|---------|-------------------|---------------|
|        | Sect | (mm)  | Name         | (m)     | (m)           | (m)     | Connection        | (mm)          |
|        |      |       |              |         |               |         |                   |               |
| 16.000 | 0    | 150   | F52          | 52.765  | 51.215        | 1.400   | Open Manhole      | 1200          |
| 15.003 | 0    | 225   | F53          | 52.699  | 50.760        | 1.714   | Open Manhole      | 1200          |
| 17.000 | 0    | 150   | F54          | 52.652  | 51.050        | 1.452   | Open Manhole      | 1200          |
| 15.004 | 0    | 225   | F55          | 52.700  | 50.615        | 1.860   | Open Manhole      | 1200          |
| 15.005 | 0    | 225   | F56          | 52.604  | 50.551        | 1.828   | Open Manhole      | 1200          |
| 15.006 | 0    | 225   | F57          | 52.598  | 50.520        | 1.853   | Open Manhole      | 1200          |
|        |      |       |              |         |               |         |                   |               |
| 18.000 | 0    | 150   | F58          | 52.662  | 51.112        | 1.400   | Open Manhole      | 1200          |
|        |      |       |              |         |               |         |                   |               |
| 15.007 | 0    | 225   | F59          | 52.664  | 50.066        | 2.373   | Open Manhole      | 1200          |
|        |      |       |              |         |               |         |                   |               |
| 19.000 | 0    | 150   | F60          | 52.732  | 51.182        | 1.400   | Open Manhole      | 1200          |
| 19.001 | 0    | 150   | F61          | 52.857  | 50.752        | 1.955   | Open Manhole      | 1200          |
|        |      | 1 - 0 |              | 50 040  | <b>F1</b> 000 | 1 400   |                   | 1000          |
| 20.000 | 0    | 150   | F62          | 52.942  | 51.392        | 1.400   | Open Manhole      | 1200          |
| 10 000 | _    | 225   | <b>T</b> C 2 | F0 000  | F0 C40        | 0 0 0 0 | Out and Manahalla | 1000          |
| 19.002 | 0    | 225   | F63          | 52.903  | 50.648        | 2.030   | Open Mannole      | 1200          |
| 15 008 | 0    | 225   | F64          | 52 584  | 49 740        | 2 619   | Open Manhole      | 1200          |
| 15 009 | 0    | 225   | F65          | 52.301  | 49 679        | 2.590   | Open Manhole      | 1200          |
| 13.009 | 0    | 225   | 105          | 52.171  | 12.072        | 2.570   | open namore       | 1200          |
| 21.000 | 0    | 150   | F66          | 53.631  | 52.081        | 1.400   | Open Manhole      | 1200          |

| PN     | Length | Slope | MH     | C.Level | I.Level | D.Depth | MH                  | MH DIAM., L*W |
|--------|--------|-------|--------|---------|---------|---------|---------------------|---------------|
|        | (m)    | (1:X) | Name   | (m)     | (m)     | (m)     | Connection          | (mm)          |
|        |        |       |        |         |         |         |                     |               |
| 16.000 | 25.750 | 56.6  | F53    | 52.699  | 50.760  | 1.789   | Open Manhole        | 1200          |
| 15.003 | 29.045 | 200.3 | F55    | 52.700  | 50.615  | 1.860   | Open Manhole        | 1200          |
| 17.000 | 43.313 | 99.6  | F55    | 52.700  | 50.615  | 1.935   | Open Manhole        | 1200          |
| 15.004 | 12.897 | 201.5 | F56    | 52.604  | 50.551  | 1.828   | Open Manhole        | 1200          |
| 15.005 | 6.189  | 199.6 | F57    | 52.598  | 50.520  | 1.853   | Open Manhole        | 1200          |
| 15.006 | 49.144 | 199.8 | F59    | 52.664  | 50.274  | 2.165   | Open Manhole        | 1200          |
|        |        |       |        |         |         |         | -                   |               |
| 18.000 | 62.730 | 60.0  | F59    | 52.664  | 50.066  | 2.448   | Open Manhole        | 1200          |
|        |        |       |        |         |         |         |                     |               |
| 15.007 | 65.148 | 199.8 | F64    | 52.584  | 49.740  | 2.619   | Open Manhole        | 1200          |
|        |        |       |        |         |         |         |                     |               |
| 19.000 | 21.195 | 49.3  | F61    | 52.857  | 50.752  | 1.955   | Open Manhole        | 1200          |
| 19.001 | 9.075  | 87.3  | F63    | 52.903  | 50.648  | 2.105   | Open Manhole        | 1200          |
|        |        |       |        |         |         |         |                     |               |
| 20.000 | 24.858 | 60.0  | F63    | 52.903  | 50.978  | 1.775   | Open Manhole        | 1200          |
|        |        |       |        |         |         |         |                     |               |
| 19.002 | 74.204 | 200.0 | F64    | 52.584  | 50.277  | 2.082   | Open Manhole        | 1200          |
|        |        |       |        |         |         |         |                     |               |
| 15.008 | 12.196 | 199.9 | F65    | 52.494  | 49.679  | 2.590   | Open Manhole        | 1200          |
| 15.009 | 64.742 | 199.8 | F72    | 53.226  | 49.355  | 3.646   | Open Manhole        | 1200          |
| 01 000 | 40 070 | 140 0 |        | F2 4F0  | F1 700  | 1 501   | Out and Manala a la | 1000          |
| 21.000 | 42.2/2 | 149.9 | Р, 9 L | 53.450  | 51./99  | 1.501   | open Manhole        | 1200          |

| Walsh Design Group                     |                         | Page 12  |
|----------------------------------------|-------------------------|----------|
| The Mall, Maryborough Woods            | Residential Development |          |
| Douglas                                | Coolcarron              |          |
| Co. Cork Ireland                       | Fermoy                  | Mirro    |
| Date 03/03/2022 08:50                  | Designed by IR          | Desinado |
| File Coolcarron_Model_4.2_DRAINAGE.mdx | Checked by MW           | Diamaye  |
| XP Solutions                           | Network 2018.1.1        | •        |

#### Upstream Manhole

| PN               | Hyd<br>Sect | Diam<br>(mm) | MH<br>Name | C.Level<br>(m)   | I.Level<br>(m)   | D.Depth<br>(m) | MH<br>Connection             | MH DIAM., L*W<br>(mm) |
|------------------|-------------|--------------|------------|------------------|------------------|----------------|------------------------------|-----------------------|
| 21.001<br>21.002 | 0<br>0      | 150<br>150   | F67<br>F68 | 53.450<br>53.431 | 51.799<br>51.757 | 1.501<br>1.524 | Open Manhole<br>Open Manhole | 1200<br>1200          |
| 22.000           | 0           | 150          | F69        | 52.955           | 51.405           | 1.400          | Open Manhole                 | 1200                  |
| 21.003           | 0           | 225          | F71        | 53.299           | 50.808           | 2.266          | Open Manhole                 | 1200                  |
| 1.017            | 0           | 225          | F72        | 53.226           | 48.917           | 4.084          | Open Manhole                 | 1200                  |

#### Downstream Manhole

| PN     | Length<br>(m) | Slope<br>(1:X) | MH<br>Name | C.Level<br>(m) | I.Level<br>(m) | D.Depth<br>(m) | MH<br>Connection  | MH DIAM., L*W<br>(mm) |
|--------|---------------|----------------|------------|----------------|----------------|----------------|-------------------|-----------------------|
| 21.001 | 6.258         | 149.0          | F68        | 53.431         | 51.757         | 1.524          | Open Manhole      | 1200                  |
| 22.000 | 35.829        | 60.0           | F71        | 53.299         | 50.808         | 2.341          | Open Manhole      | 1200                  |
| 21.003 | 86.018        | 200.0          | F72        | 53.226         | 50.378         | 2.623          | -<br>Open Manhole | 1200                  |
| 1.017  | 11.789        | 199.8          | F73        | 53.200         | 48.858         | 4.117          | Open Manhole      | 1200                  |

#### Free Flowing Outfall Details for Foul Network 1

| Out<br>Pipe | tfall<br>Number | Outfall<br>Name | c. | Level<br>(m) | I. | Level<br>(m) | I. | Min<br>Level<br>(m) | D,L<br>(mm) | W<br>(mm) |
|-------------|-----------------|-----------------|----|--------------|----|--------------|----|---------------------|-------------|-----------|
|             | 1.017           | F73             |    | 53.200       |    | 48.858       |    | 0.000               | 1200        | 0         |

# Appendix C

Irish Water Documents:

- Pre-connection enquiry,
- Irish Water Confirmation of Feasibility,
- MW Memo re. Irish Water consultations,
- Irish Water Statement of design acceptance.

# **Pre-connection enquiry form**



UISCE Eireann : irish WATER

This form is to be filled out by applicants enquiring about the feasibility of a water and/or wastewater connection to Irish Water infrastructure. If completing this form by hand, please use BLOCK CAPITALS and black ink.

Please refer to the **Guide to completing the pre-connection enquiry form** on page 13 of this document when completing the form.

\* Denotes mandatory/ required field. Please note, if mandatory fields are not completed the application will be returned.

### Section A | Applicant details

#### 1 \*Applicant details:

| Registered compa     | ny r  | nam   | e (if | ap     | olica | able  | ):  |      |      |      |      |       |      |     |      |        |     |    |   |      |      |      |
|----------------------|-------|-------|-------|--------|-------|-------|-----|------|------|------|------|-------|------|-----|------|--------|-----|----|---|------|------|------|
|                      |       |       |       |        |       |       |     |      |      |      |      |       |      |     |      |        |     |    |   |      |      |      |
| Trading name (if a   | ppli  | cab   | le):  |        |       |       |     |      |      |      |      |       |      |     |      |        |     |    |   |      |      |      |
|                      |       |       |       |        |       |       |     |      |      |      |      |       |      |     |      |        |     |    |   |      |      |      |
| Company registra     | tion  | nur   | nbe   | er (if | арр   | olica | ble | ):   |      |      |      |       |      |     |      |        |     |    | ] | <br> | <br> | <br> |
| lf you are not a reg | giste | red   | con   | npa    | ny/t  | ousi  | nes | s, p | leas | e pr | ovio | de tl | he a | ppl | ican | ıt's r | nam | e: |   |      |      |      |
|                      |       |       |       |        |       |       |     |      |      |      |      |       |      |     |      |        |     |    |   |      |      |      |
| *Contact name:       |       |       |       |        |       |       |     |      |      |      |      |       |      |     |      |        |     |    |   |      |      |      |
| *Postal address:     |       |       |       |        |       |       |     |      |      |      |      |       |      |     |      |        |     |    |   |      |      |      |
|                      |       |       |       |        |       |       |     |      |      |      |      |       |      |     |      |        |     |    |   |      |      |      |
|                      |       |       |       |        |       |       |     |      |      |      |      |       |      |     |      |        |     |    |   |      |      |      |
| *Eircode:            |       |       |       |        |       |       |     |      |      | •    |      |       |      |     |      |        |     |    |   |      | <br> | <br> |
| *Telephone:          |       |       |       |        |       |       |     |      |      |      |      |       |      |     |      |        | ]   |    |   |      |      |      |
| Mobile:              |       |       |       |        |       |       |     |      |      |      |      |       |      |     |      |        | ]   |    |   |      |      |      |
| *Email:              |       |       |       |        |       |       |     |      |      |      |      |       |      |     |      |        |     |    |   |      |      |      |
|                      |       |       |       |        |       |       |     |      |      |      |      |       |      |     |      |        |     |    |   |      |      |      |
| Agent details (if a  | appl  | lical | ble)  | :      |       |       |     |      |      |      |      |       |      |     |      |        |     |    |   |      |      |      |
| Contact name:        |       |       |       |        |       |       |     |      |      |      |      |       |      |     |      |        |     |    |   |      |      |      |
| Company name (it     | fapı  | olica | able  | ):     |       |       |     |      |      |      |      |       |      |     |      |        |     |    |   |      |      |      |
| Postal address:      |       |       |       |        |       |       |     |      |      |      |      |       |      |     |      |        |     |    |   |      |      |      |
|                      |       |       |       |        |       |       |     |      |      |      |      |       |      |     |      |        |     |    |   |      |      |      |
|                      |       |       |       |        |       |       |     |      |      |      |      |       |      |     |      |        |     |    |   |      |      |      |
| Eircode:             |       |       |       |        |       |       |     |      |      |      |      |       |      |     |      |        |     |    |   |      |      |      |
| Telephone:           |       |       |       |        |       |       |     |      |      |      |      |       |      |     |      | ]      |     |    |   |      |      |      |
| Email:               |       |       |       |        |       |       |     |      |      |      |      |       |      |     |      |        |     |    |   |      |      |      |

2

3 \*Please indicate whether it is the applicant or agent who should receive future correspondence in relation to the enquiry:

|   | Applicant                                                                               |                                              |                         |                                          |                        |                        | Age                                               | nt                   |                 |               |        |     |                 |               |                                        |                      |  |  |    |        |
|---|-----------------------------------------------------------------------------------------|----------------------------------------------|-------------------------|------------------------------------------|------------------------|------------------------|---------------------------------------------------|----------------------|-----------------|---------------|--------|-----|-----------------|---------------|----------------------------------------|----------------------|--|--|----|--------|
|   |                                                                                         |                                              |                         |                                          |                        |                        |                                                   |                      |                 |               |        |     |                 |               |                                        |                      |  |  |    |        |
| e | ction B   Site                                                                          | details                                      |                         |                                          |                        |                        |                                                   |                      |                 |               |        |     |                 |               |                                        |                      |  |  |    |        |
|   | *Site address:                                                                          |                                              |                         |                                          |                        |                        |                                                   |                      |                 |               |        |     |                 |               |                                        |                      |  |  |    |        |
|   |                                                                                         |                                              |                         |                                          |                        |                        |                                                   |                      |                 |               |        |     |                 |               |                                        |                      |  |  |    | Γ      |
|   |                                                                                         |                                              |                         |                                          |                        |                        |                                                   |                      |                 |               |        |     |                 |               |                                        |                      |  |  |    |        |
|   |                                                                                         |                                              | I                       |                                          | I                      |                        | _1                                                |                      |                 |               |        |     |                 | 1             |                                        |                      |  |  |    | -      |
|   |                                                                                         |                                              |                         |                                          |                        |                        |                                                   |                      |                 |               |        |     |                 |               |                                        |                      |  |  |    |        |
|   | *Irish Grid co-                                                                         | ordinate                                     | s of s                  | site:                                    | E                      | Eastir                 | ngs ()                                            | X)                   |                 |               |        |     | N               | orth          | nings                                  | ; (Y)                |  |  |    |        |
|   | <b>*Irish Grid co-</b><br>Eg. co-ordinate                                               | ordinate                                     | <b>s of s</b><br>, O'Cc | <b>site:</b><br>onnel                    | E<br>   St.,           | Eastir<br>Dubl         | ngs ()<br>lin:                                    | X)<br>E(X            | ) 315           | ,878          |        |     | N               | orth<br>(Y) 2 | nings<br>234,6                         | 5 (Y)<br>519         |  |  |    | Γ      |
|   | <b>*Irish Grid co-</b><br>Eg. co-ordinate                                               | ordinate<br>es of GPO                        | s of s<br>, O'Cc        | s <b>ite:</b><br>onnel                   | E<br>Il St.,           | Eastir<br>Dubl         | ngs ()<br>lin:                                    | X)<br>E(X            | ) 315           | ,878          |        |     | N<br>N          | orth<br>(Y) 2 | nings<br>234,6                         | 5 (Y)<br>519         |  |  |    |        |
|   | *Irish Grid co-<br>Eg. co-ordinate<br>*Local Author                                     | ordinate<br>es of GPO                        | s of s<br>, O'Cc        | <b>site:</b><br>onnel                    | E<br>Il St.,           | Eastir<br>Dubl         | ngs ()<br>lin:                                    | X)<br>E(X            | ) 315           | ,878          |        |     | N               | orth<br>(Y) 2 | iings<br>234,6                         | ; (Y)<br>519         |  |  |    |        |
|   | *Irish Grid co-<br>Eg. co-ordinate<br>*Local Author<br>Local Authority                  | ordinate<br>es of GPO<br>ity:<br>/ that grai | nted p                  | <b>site:</b><br>onnel<br>planr           | E<br>Il St.,<br>ning p | Eastir<br>Dubl         | ngs ()<br>lin:<br>iissio                          | K)<br>E(X<br>n (if a | ) 315<br>) 315  | ,878          | ·):    |     | N               | orth<br>(Y) 2 | nings<br>234,6                         | 5 (Y)<br>519         |  |  |    | Γ      |
|   | *Irish Grid co-<br>Eg. co-ordinate<br>*Local Author<br>Local Authority                  | ordinate<br>es of GPO<br>ity:<br>/ that gran | nted p                  | site:<br>onnel<br>planr                  | E<br>Il St.,<br>ning p | Eastir<br>Dubl         | ngs ()<br>lin:<br>nissio                          | x)<br>E(X<br>n (if a | ) 315<br>applic | ,878<br>able  | ·):    |     | N               | orth<br>(Y) 2 | 1111 111 111 111 111 111 111 111 111 1 | s (Y)<br>519         |  |  |    | T      |
|   | *Irish Grid co-<br>Eg. co-ordinate<br>*Local Author<br>Local Authority                  | ordinate<br>es of GPO<br>ity:<br>/ that gran | nted p                  | site:<br>onnel<br>planr                  | E<br>Il St.,<br>ning p | Eastir<br>Dubl         | ngs ()<br>lin:<br>hissio                          | X)<br>E(X<br>n (if a | ) 315<br>applic | ,878<br>cable | •):    |     |                 | orth<br>(Y) 2 | 11111111111111111111111111111111111111 | 5 (Y)<br>519         |  |  |    | T<br>T |
|   | *Irish Grid co-<br>Eg. co-ordinate<br>*Local Author<br>Local Authority                  | ordinate<br>es of GPO<br>ity:<br>/ that gran | nted p                  | site:<br>onnel<br>planr                  | E<br>Il St.,<br>ning p | Eastir<br>Dubl         | ngs ()<br>lin:<br>nissio                          | X)<br>E(X<br>n (if a | ) 315<br>applic | ,878<br>able  | ·):    |     |                 | (Y) 2         | 111195<br>234,6                        | ; (Y)<br>519         |  |  |    |        |
|   | *Irish Grid co-<br>Eg. co-ordinate<br>*Local Author<br>Local Authority                  | ordinate<br>es of GPO<br>ity:<br>/ that gran | nted p                  | site:<br>onnel<br>planr                  | een į                  | Eastir<br>Dubl         | ngs ()<br>lin:<br>iissio<br>ted?                  | <)<br>E(X<br>n (if a | ) 315<br>applic | ,878<br>cable | ·):    |     | N d             | orth<br>(Y) 2 | 1 γ                                    | ; (Y)<br>519<br>//es |  |  | No |        |
|   | *Irish Grid co-<br>Eg. co-ordinate<br>*Local Author<br>Local Authority<br>Has full plan | ordinate<br>es of GPO<br>ity:<br>/ that gran | nted p                  | site:<br>onnel<br>planr<br>on b<br>rrent | een g                  | Eastir<br>Dubl<br>perm | ngs ()<br>lin:<br>hissio<br><b>ted?</b><br>bus pl | X)<br>E(X<br>n (if a | ) 315<br>applic | ,878<br>cable | );<br> | umb | Ni<br>Ni<br>er: | 0rth<br>(Y) 2 | 111195<br>234,6                        | ; (Y)<br>519<br>     |  |  | No |        |

#### 8 Please outline the domestic and/or industry/business use proposed:

| Property type            | Number of units | Property type | Number of units | Property type   | Number of units |
|--------------------------|-----------------|---------------|-----------------|-----------------|-----------------|
| House                    |                 | Apartments    |                 | Agricultural    |                 |
| Office                   |                 | School        |                 | Retail unit     |                 |
| Residential care<br>home |                 | Institution   |                 | Industrial unit |                 |
| Hotel                    |                 | Factory       |                 | Other           |                 |
| Other (please spec       | ify type)       |               |                 |                 |                 |

#### 9 \*Approximate start date of proposed development:

#### 10 \*Is the development multi-phased?

If 'Yes', application must include a master-plan identifying the development phases and the current phase number.

Yes

No

If 'Yes', please provide details of variations in water demand volumes and wastewater discharge loads due to phasing requirements.

#### 11 \*Please indicate the type of connection required by ticking the appropriate box below:

| Water      | Please go to Section D                |
|------------|---------------------------------------|
| Wastewater | Please go to Section E                |
| Both       | Please complete both Sections D and E |

See Notes page attached for breakdown of the 8no. proposed development phases

| Sec  | tion D   Water connection and demand details                                   |       |    |
|------|--------------------------------------------------------------------------------|-------|----|
|      |                                                                                |       |    |
| 12   | *Is there an existing connection to public water mains at the site?            | Yes   | No |
| 12.1 | If yes, is this enquiry for an additional connection to one already installed? | Yes   | No |
| 12.2 | If yes, is this enquiry to increase the size of an existing connection?        | Yes   | No |
|      |                                                                                |       |    |
| 13   | Approximate date water connection is required:                                 |       |    |
| 1/   | *What diameter of water connection is required to service the develop          | ment? |    |
| 14   |                                                                                |       |    |
| 15   | *Is more than one connection required to the public infrastructure             |       |    |
|      | to service this development?                                                   | Yes   | No |
|      | If 'Yes', how many?                                                            |       |    |
|      | If 'Yes', how many?                                                            |       |    |

#### 16 Please indicate the business water demand (shops, offices, schools, hotels, restaurants, etc.):

| Post-development peak hour water demand    | l/s |
|--------------------------------------------|-----|
| Post-development average hour water demand | l/s |

Please include calculations on the attached sheet provided. Where there will be a daily/weekly/seasonal variation in the water demand profile, please provide all such details.

#### 17 Please indicate the industrial water demand (industry-specific water requirements):

| Post-development peak hour water demand    | l/s |
|--------------------------------------------|-----|
| Post-development average hour water demand | l/s |

Please include calculations on the attached sheet provided. Where there will be a daily/weekly/seasonal variation in the water demand profile, please provide all such details.

## 18 What is the existing ground level at the property boundary at connection point (if known) above Malin Head Ordnance Datum?

| 19 | What is the highest finished floo | r level of the proposed | l development above l | Malin Head Ordnance Datum |
|----|-----------------------------------|-------------------------|-----------------------|---------------------------|
|----|-----------------------------------|-------------------------|-----------------------|---------------------------|

| Yes | No  |
|-----|-----|
|     | Yes |

m

Please include calculations on the attached sheet provided.

20

| 21 | Are there fire flow requirements?                                           | Yes | No |
|----|-----------------------------------------------------------------------------|-----|----|
|    | Additional fire flow requirements over and above those identified in O16-17 | l/s |    |

Please include calculations on the attached sheet provided, and include confirmation of requirements from the Fire Authority.

Yes

No

#### 22 Do you propose to supplement your potable water supply from other sources?

If 'Yes', please indicate how you propose to supplement your potable water supply from other sources (see **Guide to completing the application form** on page 12 of this document for further details):

| Sec      | tion E   Wastewater connection and discharge details                                                   |             |
|----------|--------------------------------------------------------------------------------------------------------|-------------|
| 23       | *Is there an existing connection to a public sewer at the site? Yes                                    | No          |
| 23.1     | If yes, is this enquiry for an additional connection to the one already installed? Yes                 | No          |
| 23.2     | If yes, is this enquiry to increase the size of an existing connection? Yes                            | No          |
| 24<br>25 | *Approximate date that wastewater connection is required:                                              | <br>] mm    |
| 26       | *Is more than one connection required to the public infrastructure<br>to service this development? Yes | No          |
|          | If 'Yes', how many?                                                                                    |             |
| 27       | Please indicate the commercial wastewater hydraulic load (shops, offices, schools, hotels, restaurar   | nts, etc.): |

| Post-development peak discharge    | l/s |
|------------------------------------|-----|
| Post-development average discharge | l/s |

Please include calculations on the attached sheet provided.

#### 28 Please indicate the industrial wastewater hydraulic load (industry-specific discharge requirements):

| Post-development peak discharge    | l/s |
|------------------------------------|-----|
| Post-development average discharge | l/s |

Please include calculations on the attached sheet provided.

#### 29 Wastewater organic load:

| Characteristic                     | Max concentration<br>(mg/l) | Average concentration<br>(mg/l) | Maximum daily load<br>(kg/day) |
|------------------------------------|-----------------------------|---------------------------------|--------------------------------|
| Biochemical oxygen<br>demand (BOD) |                             |                                 |                                |
| Chemical oxygen demand<br>(COD)    |                             |                                 |                                |
| Suspended solids (SS)              |                             |                                 |                                |
| Total nitrogen (N)                 |                             |                                 |                                |
| Total phosphorus (P)               |                             |                                 |                                |
| Other                              |                             |                                 |                                |
|                                    |                             |                                 | *                              |

| Temperature range |  |
|-------------------|--|
| pH range          |  |

# 30 \*Storm water run-off will only be accepted from brownfield sites that already have a storm/surface water connection to a combined sewer. In the case of such brownfield sites, please indicate if the development intends discharging surface water to the combined wastewater collection system:

If 'Yes', please give reason for discharge and comment on adequacy of SUDS/attenuation measures proposed.

#### 31 \*Do you propose to pump the wastewater?

If 'Yes', please include justification for your pumped solution with this application.

32 What is the existing ground level at the property boundary at connection point (if known) above Malin Head Ordnance Datum?

Exact connection point of rising main to IW sewer is to be agreed with IW

33 What is the lowest finished floor level on site above Malin Head Ordnance Datum?

m

No

No

Yes

Yes

#### 34 What is the proposed invert level of the pipe exiting the property to the public road?

The pipe exiting the property to the public road will be a rising main. Ground level at this point is 57.40m



#### Please provide the following additional information (all mandatory):

- Site location map: A site location map to a scale of 1:1000, which clearly identifies the land or structure to which the enquiry relates. The map shall include the following details:
  - i. The scale shall be clearly indicated on the map.
  - ii. The boundaries shall be delineated in red.
  - iii. The site co-ordinates shall be marked on the site location map.
- > Details of planning and development exemptions (if applicable).
- > Calculations (calculation sheets provided below).
- Site layout map to a scale of 1:500 showing layout of proposed development, water network and wastewater network layouts, additional water/wastewater infrastructure if proposed, connection points to Irish Water infrastructure.
- > Conceptual design of the connection asset from the proposed development to the existing Irish Water infrastructure, including service conflicts, gradients, pipe sizes and invert levels.
- > Any other information that might help Irish Water assess this pre-connection enquiry.

#### Section G | Declaration

I/We hereby make this application to Irish Water for a water and/or wastewater connection as detailed on this form.

I/We understand that any alterations made to this application must be declared to Irish Water.

The details that I/we have given with this application are accurate.

I/We have enclosed all the necessary supporting documentation.

Any personal data you provide will be stored and processed by Irish Water and may be transferred to third parties for the purposes of the water and/or wastewater connection process. I hereby give consent to Irish Water to store and process my personal data and to transfer my personal data to third parties, if required, for the purposes of the connection process.

If you wish to revoke consent at any time or wish to see Irish Water's full Data Protection Notice, please see **https://www.water.ie/privacy-notice/** 

| Signature: |  | Date: |  | _/ |  |  | /[ |  |  |  |  |  |
|------------|--|-------|--|----|--|--|----|--|--|--|--|--|
|------------|--|-------|--|----|--|--|----|--|--|--|--|--|

#### Your full name (in BLOCK CAPITALS):

| <br> |  |  |  |  |   |  |  |  |  |  |  |  |  |   |  |  |
|------|--|--|--|--|---|--|--|--|--|--|--|--|--|---|--|--|
|      |  |  |  |  |   |  |  |  |  |  |  |  |  |   |  |  |
|      |  |  |  |  | 1 |  |  |  |  |  |  |  |  | 1 |  |  |
|      |  |  |  |  | 1 |  |  |  |  |  |  |  |  | 1 |  |  |
|      |  |  |  |  | 1 |  |  |  |  |  |  |  |  | 1 |  |  |
|      |  |  |  |  |   |  |  |  |  |  |  |  |  | - |  |  |

Irish Water will carry out a formal assessment based on the information provided on this form. Any future connection offer made by Irish Water will be based on the information that has been provided here.

Please submit the completed form to **newconnections@water.ie** or alternatively, post to:

| Irish Water                |
|----------------------------|
| PO Box 860                 |
| South City Delivery Office |
| Cork City                  |

Please note that if you are sending us your application form and any associated documentation by email, the maximum file size that we can receive in any one email is 35MB.

#### Please note, if mandatory fields are not completed the application will be returned.

Irish Water is subject to the provisions of the Freedom of Information Act 2014 ("FOIA") and the codes of practice issued under FOIA as may be amended, updated or replaced from time to time. The FOIA enables members of the public to obtain access to records held by public bodies subject to certain exemptions such as where the requested records may not be released, for example to protect another individual's privacy rights or to protect commercially sensitive information. Please clearly label any document or part thereof which contains commercially sensitive information. Irish Water accepts no responsibility for any loss or damage arising as a result of its processing of freedom of information requests.

# Calculations

Water demand

#### Fire flow requirements


Ian Reilly

The Mall Maryborough Woods Douglas Cork T12K8YT

Cathair Chorcaí Iri sh Wa ter PO Box 448, South City Delivery Office,

**Uisce Éireann** Bosca OP 448

**Cathrach Theas** 

Oifig Sheach adta na

18 January 2021

www.water.ie

Cork City.

### Re: CDS20000034 pre-connection enquiry - Subject to contract | Contract denied Connection for Multi/Mixed Use Development of 375 unit(s) at Coolcarron, Fermoy, Co. Cork

Dear Sir/Madam,

Irish Water has reviewed your pre-connection enquiry in relation to a Water & Wastewater connection at Coolcarron, Fermoy, Co. Cork (the **Premises**). Based upon the details you have provided with your pre-connection enquiry and on our desk top analysis of the capacity currently available in the Irish Water network(s) as assessed by Irish Water, we wish to advise you that your proposed connection to the Irish Water network(s) can be facilitated at this moment in time.

| SERVICE                                            | OUTCOME OF PRE-CONNECTION ENQUIRY<br><u>THIS IS NOT A CONNECTION OFFER. YOU MUST APPLY FOR A</u><br><u>CONNECTION(S) TO THE IRISH WATER NETWORK(S) IF YOU WISH</u><br><u>TO PROCEED.</u>                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Water Connection                                   | Feasible without infrastructure upgrade by Irish Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| Wastewater Connection Feasible subject to upgrades |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| SITE SPECIFIC COMMENTS                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Water Connection                                   | Connection can be made to the 150mm watermain at the entrance to the site                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| Wastewater Connection                              | In order to accommodate the proposed connection at the Premises,<br>upgrade works are required to increase the capacity of Fermoy wastewater<br>treatment plant. Irish Water does not currently have any plans to carry out<br>the works required to provide the necessary upgrade and capacity. Should<br>you wish to have such upgrade works progressed, Irish Water will require<br>you to provide a contribution of a relevant portion of the costs for the<br>required upgrades, please contact Irish Water to discuss this further. |  |  |  |

Stiúrthóirí / Directors: Cathal Marley (Chairman), Niall Gleeson, Eamon Gallen, Yvonne Harris, Brendan Murphy, Maria O'Dwyer

Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin 1, D01 NP86 Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Irish Water is a designated activity company, limited by shares. Uimhir Chláraithe in Éirinn / Registered in Ireland No.: 530363

IW-HP-BUS

The design and construction of the Water & Wastewater pipes and related infrastructure to be installed in this development shall comply with the Irish Water Connections and Developer Services Standard Details and Codes of Practice that are available on the Irish Water website. Irish Water reserves the right to supplement these requirements with Codes of Practice and these will be issued with the connection agreement.



#### The map included below outlines the current Irish Water infrastructure adjacent to your site:

Reproduced from the Ordnance Survey of Ireland by Permission of the Government. License No. 3-3-34

Whilst every care has been taken in its compilation Irish Water gives this information as to the position of its underground network as a general guide only on the strict understanding that it is based on the best available information provided by each Local Authority in Ireland to Irish Water. Irish Water can assume no responsibility for and give no guarantees, undertakings or warranties concerning the accuracy, completeness or up to date nature of the information provided and does not accept any liability whatsoever arising from any errors or omissions. This information should not be relied upon in the event of excavations or any other works being carried out in the vicinity of the Irish Water underground network. The onus is on the parties carrying out excavations or any other works to ensure the exact location of the Irish Water underground network is identified prior to excavations or any other works being carried out. Service connection pipes are not generally shown but their presence should be anticipated.

### **Strategic Housing Development**

Irish Water notes that the scale of this development dictates that it is subject to the Strategic Housing Development planning process. Therefore:

A. In advance of submitting your full application to An Bord Pleanala for assessment, you must have reviewed this development with Irish Water and received a Statement of Design Acceptance in relation to the layout of water and wastewater services. Please submit your design to CDSDesignQA@water.ie

B. In advance of submitting this development to An Bord Pleanala for full assessment, the Developer is required to have entered into a Project Works Services Agreement to deliver infrastructure upgrades to facilitate the connection of the development to Irish Water infrastructure.

### **General Notes:**

- 1) The initial assessment referred to above is carried out taking into account water demand and wastewater discharge volumes and infrastructure details on the date of the assessment. The availability of capacity may change at any date after this assessment.
- This feedback does not constitute a contract in whole or in part to provide a connection to any Irish Water infrastructure. All feasibility assessments are subject to the constraints of the Irish Water Capital Investment Plan.
- 3) The feedback provided is subject to a Connection Agreement/contract being signed at a later date.
- 4) A Connection Agreement will be required to commencing the connection works associated with the enquiry this can be applied for at <a href="https://www.water.ie/connections/get-connected/">https://www.water.ie/connections/get-connected/</a>
- 5) A Connection Agreement cannot be issued until all statutory approvals are successfully in place.
- 6) Irish Water Connection Policy/ Charges can be found at <a href="https://www.water.ie/connections/information/connection-charges/">https://www.water.ie/connections/information/connection-charges/</a>
- 7) Please note the Confirmation of Feasibility does not extend to your fire flow requirements.
- Irish Water is not responsible for the management or disposal of storm water or ground waters. You are advised to contact the relevant Local Authority to discuss the management or disposal of proposed storm water or ground water discharges
- 9) To access Irish Water Maps email <u>datarequests@water.ie</u>
- 10) All works to the Irish Water infrastructure, including works in the Public Space, shall have to be carried out by Irish Water.

If you have any further questions, please contact Brian O'Mahony from the design team on 022 52205 or email bomahony@water.ie For further information, visit **www.water.ie**/connections.

Yours sincerely,

Monne Maesis

Yvonne Harris Head of Customer Operations



Head Office The Mall Maryborough Woods Douglas Cork, T12 K8YT (021) 477 4940 www.wdg.ie reception@wdg.ie Dublin Office Unit 111, Q House 76 Furze Road Sandyford Dublin 18, D18 PF29 (01) 524 0191 www.wdg.ie reception@wdg.ie

Memo

Date: 3<sup>rd</sup> March 2022

Project No: WDG 19074

Project Description: SHD Planning Application Coolcarron Fermoy Co. Cork

Throughout 2020 and 2021 I had been in regular contact with Brian O'Mahony and Tadhg Coffey to discuss the perceived capacity Issues with the WWTP at Fermoy. A Teams meeting was held to discuss the Capacity issues on 14<sup>th</sup> January 2021. Following this meeting Brian O' Mahony wrote to the writer explaining that the Fermoy WWTP was constructed with a capacity of 22,000PE but was currently operating with a design capacity of 11,000 PE. He advised that the existing plant had an available capacity of 975 PE which equated to circa 357 houses. However, he advised that there was another permitted development for 100 houses in Fermoy and accordingly there was only capacity for 257 houses from our development. It was suggested that in order to construct the full planned development it would be necessary for the developer to enter into a Public Works Service Agreement (PWSA) with Irish water for the expansion of the existing WWTP facilities at Fermoy. MW wrote to Tadhg Coffey and Brian O' Mahony on 12<sup>th</sup> October asking whether IW would be in apposition to issue Statement of Design Acceptance and subsequent Connection Agreement for circa 300 units if the developer proceeded with an application for this reduced number of units.

Following this query Tadgh Coffey of Irish Water phoned the writer in December 2021 and advised that IW had by then completed a revised study of available capacity and were now satisfied that they would be in a position to provide capacity for the full planned development of 336 units plus Creche. He advised that IW were satisfied at that time that the necessary capacity could be made available following modest upgrades which could be carried out by Irish Water from their own resources and that A PWSA would not now be required. It was agreed that it was appropriate for WDG to apply for a Statement of Design Acceptance for the full development. This application was lodged on 6<sup>th</sup> January 2022 and the statement of Design Acceptance for the full development was issued on 18<sup>th</sup> February 2022.

Michael Walsh BE CENG MIEI On Behalf of Walsh Design Group

**Reg. No:** 476845. Walsh Design Group is a registered trading name of Browne Asset Solutions Ltd **Registered Office:** The Mall, Maryborough Woods, Douglas, Co. Cork. T12 K8YT **Directors:** Michael Walsh, Jamie Wallace, Patrick Beckett



Ian Reilly Walsh Design Group, The Mall Maryborough Woods Douglas Cork T12K8YT

18 February 2022

# Re: Design Submission for Coolcarron, Fermoy, Co. Cork (the "Development") (the "Design Submission") / Connection Reference No: CDS20000034

Dear Ian Reilly,

Many thanks for your recent Design Submission.

We have reviewed your proposal for the connection(s) at the Development. Based on the information provided, which included the documents outlined in Appendix A to this letter, Irish Water has no objection to your proposals.

This letter does not constitute an offer, in whole or in part, to provide a connection to any Irish Water infrastructure. Before you can connect to our network you must sign a connection agreement with Irish Water. This can be applied for by completing the connection application form at <u>www.water.ie/connections</u>. Irish Water's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Regulation of Utilities (CRU)(<u>https://www.cru.ie/document\_group/irish-waters-water-charges-plan-2018/</u>).

You the Customer (including any designers/contractors or other related parties appointed by you) is entirely responsible for the design and construction of all water and/or wastewater infrastructure within the Development which is necessary to facilitate connection(s) from the boundary of the Development to Irish Water's network(s) (the "**Self-Lay Works**"), as reflected in your Design Submission. Acceptance of the Design Submission by Irish Water does not, in any way, render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works.

If you have any further questions, please contact your Irish Water representative: Name: Adrian Roberts Email: adrian.roberts@water.ie

Yours sincerely,

Monne Massis

Yvonne Harris Head of Customer Operations



Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Irish Water PO Box 448, South City Delivery Office, Cork City.

www.water.ie

### Appendix A

**Document Title & Revision** 

- 19074-P-002-1 REV: C
- 19074-P-002-2 REV: C
- 19074-P-002-3 REV: B
- 19074-P-003-1 REV: D
- 19074-P-003-2 REV: D
- 19074-P-302-1 REV: C
- 19074-P-302-2 REV: C
- 19074-P-302-3 REV: C
- 19074-P-302-4 REV: C
- 19074-P-302-5 REV: B
- 19074-P-501 REV: A
- 19074-P-502 REV: A
- 19074-P-503 REV: A
- 19074-P-505 REV: A
- 19074-P-900 REV: A

For further information, visit www.water.ie/connections

<u>Notwithstanding any matters listed above, the Customer (including any appointed</u> <u>designers/contractors, etc.) is entirely responsible for the design and construction of the Self-Lay</u> <u>Works.</u> Acceptance of the Design Submission by Irish Water will not, in any way, render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works.

### Appendix D

ESB Networks – Original Underground Services map,

ESB Networks – Diversion Map,

ESB Networks – Letter of Agreement,

ESB Networks – Drawing - Typical Structures for 38kV lines,

ESB Networks – Drawing – Sealing Ends

Gas Networks Ireland - Underground Services map.





## **PROJECT NAME: PROPOSED BARRYMORE-COOLCARRON 38kV** LINE DIVERSION

## COUNTY: Cork

## **TOWNLAND:** Coolcarron



MAP NUMBER: 5959-C

SCALE: 1:1500 @ A3

Note : To be read with attached 1.Drawing number PG567-D020-213-001-001 2.Drawing number PG406-D038-010-001-001

- Retirement of type "B" & "C" portal sets
- Retirement of type "F" steel mast structure
- Retirement of overhead conductors
- Realignment of overhead conductors
- New 38kV cable sealing ends
- New type "F" 12m steel mast structure
- New underground cable route
- Existing 38kV MV overhead lines

# LEGEND

| à \ | X,Y: 181463 , 97525 |
|-----|---------------------|
|     |                     |
|     |                     |
|     |                     |
|     |                     |
|     |                     |
|     |                     |
|     |                     |
|     |                     |
|     |                     |
|     | Λ                   |
| Γ   |                     |
|     | $\square$           |
|     |                     |

X,Y: 181463, 97525



Wilton, Corcaigh, Éire **Fón** 1850 372 757 esbnetworks.ie

Wilton, Cork, Ireland Phone 1850 372 757

21 February 2022

Mr. Ian Reilly Walsh Design Group' The Mall, Maryborough woods, Douglas, Cork. T12 K8YT

Your Ref: Proposed residential development at Coolcarron, Fermoy , Co. Cork Our Ref: Proposed line diversion on Barrymore-Coolcarron 38Kv line

### WITHOUT PREJUDICE

Dear lan,

Thank you for your application for an alteration to our network at the above location. Based upon drawing numbers 19074-P-001-1 and 19074-P-001-2,19074-P-305 provided by you to Electricity Supply Board Networks, (ESBN) will agree to carry out the requested changes to the distribution network (see attached map and 38Kv outline of typical structures of lattice steel mast Type "F" drawing number PG567-D020-213-001-001 and 38kV cable sealing ends Drawing number PG406-D038-010-001-001) subject to acceptance of Terms and conditions.

I have discussed with Mr. Ian Reilly the safety issues arising from the proximity of the 38kV overhead electricity line to the proposed development.

ESBN has no problem in altering the overhead line to facilitate the construction of the development and Mr. Ian Reilly has agreed to cooperate fully with the ESB to achieve this.

The ESB does not have an issue with work commencing on the site prior to the 38kV line being altered once the precautions outlined in the safety literature and agreed by Mr. Ian Reilly and myself are implemented.

I will be working closely with Mr. Ian Reilly and his contractor on an ongoing basis.

If you require further information or if I can be of assistance in any way regarding this matter, please do not hesitate in contacting me.

Yours sincerely,

### Pat Harrington

Pat Harrington Engineering Officer Network Projects South ESB Sarsfield Road Wilton Cork Phone: 021-4844205

| 01 6  | Type "A" Single Pole Intermediate Structure<br>Single wood pole with 4m steel crossarm holding conductors horizontally 2m apart.<br>Pole lengths from 12m to 16m incl. buried depth 2.3m.<br>Maximum conductor height overground 14.1m.                                                                                                                                                                        | of this work may be modified or reproduced or copied in any form<br>ling photocopying, recording, taping or information-and-retrieval<br>puppes, without the written permission of ESB International Ltd.<br>ified Approved Approved date<br>US1 qCC P_Ennis | No. or shits Size Scale<br>10 A3 NA<br>SHET REV<br>567-D020-213-001-001                                            | 101-005 EIO 001 001                                 |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 8     | Type "B" Portal Suspension & Portal Strain Structures<br>Two wood poles, 2m apart with a 4m steel crossarm holding conductors horizontally 2m apart.<br>Insulator chain may be vertical or horizontal.<br>Pole lengths from 12m to 20m incl. buried depth 2.3m.<br>Maximum conductor height overground 17.2m.<br>Poles can also be 3m apart with a 6m steel crossarm holding conductors horizontally 3m apart. | Copyright ESB International Ltd All rights reserved. No part<br>or by any means – graphic, electronic or mechanical, indu<br>system, or used for any purpose other than its designated<br>Drawn Produced Ve<br>E.B.L OWJOT J.                                | TC205748                                                                                                           | <u>,</u>                                            |
| ۷     | Type "C" Light Angle Suspension & Light Angle Strain Structures<br>Two wood poles, 2m apart with a 4m steel crossarm holding conductors horizontally 2m apart.<br>Insulator chain may be in suspension or horizontal.<br>Pole lengths from 12m to 16m incl. buried depth 2.3m.<br>Maximum conductor height overground 13.2m.                                                                                   | duction Unit<br>High Voltage Engineering<br>wing Title<br>38kV LINES /PLANNING APPLICATION                                                                                                                                                                   | outline of typical structures<br>GLE Phase Racoon & Mulberry Conduc                                                |                                                     |
| 5 6   | Line can deviate by 20deg, with up to 3 sets of cross bracings.                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                              | ERIC LINES DOCUMENTS                                                                                               |                                                     |
| 4     | Pole lengths from 12m to 16m incl. buried depth 2.3m.<br>Maximum conductor height overground 13.6m.<br>Line can deviate by 60deg, with two staywires extending from the crossarm at 45deg.                                                                                                                                                                                                                     | ational Client<br>ment Ld<br>ev. bubhn 2 reland                                                                                                                                                                                                              | GEN<br>GEN                                                                                                         |                                                     |
| 3     | Three wood poles, 2m apart with a 4m steel crossarm holding conductors horizontally 2m apart.<br>Insulator chain is horizontal.<br>Pole lengths from 12m to 16m incl. buried depth 2.3m.<br>Maximum conductor height overground 13.4m<br>Three staywires, (one on each pole) extend from pole tops at 45deg.<br>Underground Continuation                                                                       | ESB Intern<br>Septen Court 1821 St Stephens Gare                                                                                                                                                                                                             | Telephone + 353-1-703 8000 Fax+3:<br>www.esbi.ie<br>Registered Office as above<br>Registered in Ireland No. 155249 |                                                     |
| - 2   | Type "F" Lattice steel mast Structure.<br>Base buried depth 2.3m. in concrete.<br>Maximum conductor height overground 9, 12 or 15m.<br>Corresponding base footprint 2.4, 2.8, or 3.2m.<br>Mast apex can be up to 1m over conductor height depending on manufacture.<br>4m crossarm with horizontal Insulator chain holding conductors 2m apart<br>Bracing shown may change depending on manufacture.           |                                                                                                                                                                                                                                                              | rE E ADDED<br>A ESB NETWORKS AT REV 0<br>Revision Description<br>- Preliminary unless indicated                    | roval \\\\ Construction \\\ As-built \\ Revised \\\ |
| 3 CAD | Bracing snown may change depending on manufacture.<br>Can be used as an End mast to terminate a line, or used as an Angle mast to allow up to a 60deg. deviation in the line.                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                              | MPORTED FROM                                                                                                       | ider 🗌 Client App.                                  |

usiness Form No.BF-DRG-005-007



d:\bc-workspace\srv\_ipm\m-virtapp172s,d-high voltage\drawings\pg406 generic substation engineering docs\038 - 38 kv & mv standard civil drawings\pg406-d038-010-001-001.dwg

| (RIGHT @ ESBI ENGINEERING & FACILITY MANAGEMENT LIMITED.<br>Interserved. No part of this work may be modified or reproduced or copied in any form or by any means - graphic, electronic or<br>anical, including photocopying, recording, taping or information-and-retrieval system, or used for any purpose other than its<br>nated purpose, without the written permission of ESBI Engineering & Facility Management Ltd. |      |               |            |            |       |       |            |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|------------|------------|-------|-------|------------|--|
| AWN                                                                                                                                                                                                                                                                                                                                                                                                                         | PROD | UCED          | VERIFIED 1 | VERIFIED 2 | APPRO | OVED  | APPD DATE  |  |
| rk.Kenny                                                                                                                                                                                                                                                                                                                                                                                                                    | К.W  | Vard          | R.Lenihan  | B.Perry    | C.Two | omey  | 13/02/2018 |  |
| nt ref.                                                                                                                                                                                                                                                                                                                                                                                                                     |      | No. of sheets |            | Size       |       | Scale |            |  |
| STD.07                                                                                                                                                                                                                                                                                                                                                                                                                      |      |               | 1          | A3         |       | As    | As Shown   |  |
| awing number Sheet Rev<br>PG406-D038-010-001-001                                                                                                                                                                                                                                                                                                                                                                            |      |               |            |            |       |       |            |  |



### Important Safety Notice:

Damage to gas pipelines can result in serious injury or death. Gas network information is provided as a general guide. The exact location and depth of medium or low pressure distribution gas pipes must be verified on site by carrying out necessary investigations, including, for example, hand digging trial holes along the route of the pipe. Service pipes are not generally shown but their presence should always be anticipated.

High pressure transmission pipelines are shown in red. If a transmission pipeline is identified within 10m of any intended excavations then work must not proceed before GNI has been consulted. The true location and depth of a transmission pipeline must be verified on site by a representative of GNI. Contact can be made through 1850 427 747.

All work in the vicinity of the gas network must be completed in accordance with the current edition of the Health & Safety Authority publication, Code of Practice For Avoiding Danger From Underground Services which is available from the Health and Safety Authority (1890 289 389) or can be downloaded at www.hsa.ie.

#### Legal Notice:

Gas Networks Ireland (GNI) and its affiliates, accept no responsibility for the accuracy of any information contained in this document including data concerning location and technical designation of the gas distribution and transmission network (the Information ). The Information should not be relied on for accurate distance or depth of cover measurements.

Any representations and warranties, express or implied, are excluded to the fullest extent permitted by law. No liability shall be accepted for any loss or damage including, without limitation, direct, indirect or consequential loss, arising out of or in connection with the use or re-use of the Information.

|                  |                           | Aurora Telecom Fibre Optic Cable |              |                       |  |  |  |
|------------------|---------------------------|----------------------------------|--------------|-----------------------|--|--|--|
|                  |                           | Aurora Telecom Duct              |              |                       |  |  |  |
|                  |                           | Aurora Telecom Sub-duct          |              |                       |  |  |  |
|                  |                           | Aurora Telecom                   | Inserted     | Gas Pipe              |  |  |  |
| Contact          | Aurora Telecom on 1850-   | 427-399 or (01)20                | 3-0120.      |                       |  |  |  |
|                  |                           | Transmission Pip                 | e (High      | Pressure)             |  |  |  |
|                  |                           | Transmission Pip                 | e (Const     | ruction Issue)        |  |  |  |
|                  |                           | Distribution Pipe                | (Mediur      | n Pressure)           |  |  |  |
|                  |                           | Distribution Pipe                | (Low Pr      | ressure)              |  |  |  |
|                  |                           | Service Pipe (Medium Pressure)   |              |                       |  |  |  |
|                  |                           | Service Pipe (Low Pressure)      |              |                       |  |  |  |
|                  |                           | Strategic Pipe (Medium Pressure) |              |                       |  |  |  |
|                  |                           | Strategic Pipe (Low Pressure)    |              |                       |  |  |  |
|                  | 0-00-000                  | Inserted Pipe (Medium Pressure)  |              |                       |  |  |  |
|                  |                           | Inserted Pipe (Low Pressure)     |              |                       |  |  |  |
|                  |                           | Distribution Pipe                | (Abando      | oned)                 |  |  |  |
| .C=?             | Cover (depth in meters)   |                                  | ⊗-           | Pressure Monitor      |  |  |  |
| СР               | CP Test Point             |                                  | ( <i>z</i> 1 | Protection (Sleeve)   |  |  |  |
| D                | End Cap                   |                                  |              | Protection (Slabbing) |  |  |  |
|                  | Hot Tap                   |                                  | $\Box$       | Reducer               |  |  |  |
| $\boxtimes$      | Installation              |                                  | 1            | Service Terminator    |  |  |  |
| $\bowtie$        | Valve                     |                                  | 0            | Tee                   |  |  |  |
| ۲                | Mains Verification **     |                                  |              | Transition            |  |  |  |
| ** <b>P</b> leas | se contact GNI on 1850-42 | 7747 for specific i              | nformati     | on.                   |  |  |  |

\*\* Please contact GNI on 1850-427747 for specific information.

| Design Department - CORK | Gas<br>Networks<br>Ireland |
|--------------------------|----------------------------|
| GAS NETWORK IN           | FORMATION                  |

| Walsh Design Group |
|--------------------|
|--------------------|

| Location:   |            |          |          |
|-------------|------------|----------|----------|
| Plot Date:  | 11/09/2019 | Contact: | I Reilly |
| Plotted by: |            | Scale:   |          |

1:1000

KOC